Der Absorptionskoeffizient, auch Dämpfungskonstante oder linearer Schwächungskoeffizient, ist ein Maß für die Verringerung der Intensität elektromagnetischer Strahlung beim Durchgang durch ein gegebenes Material. Er wird in der Optik und in Bezug auf Röntgenstrahlung und Gammastrahlung verwendet. Sein übliches Formelsymbol ist in der Optik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha' , bei Röntgen- und Gammastrahlung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu . Seine Dimension ist 1/Länge, die übliche Einheit 1/cm. Ein großer Absorptionskoeffizient bedeutet, dass das Material die betrachtete Strahlung relativ stark abschirmt, ein kleiner dagegen, dass es durchlässiger für die Strahlung ist.
In der Bezeichnung Absorptionskoeffizient ist der Begriff Absorption nicht im engeren Sinn der Abgabe von Strahlungsenergie an das Medium zu verstehen. Zur hier gemeinten Intensitätsabnahme (Extinktion) tragen vielmehr auch Streuprozesse bei, die die Strahlung nur aus ihrer Richtung ablenken.
Gemäß dem lambert-beerschen Gesetz klingt die Intensität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I nach Durchlaufen eines Absorbers der Dicke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z bzw. in einer Eindringtiefe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z exponentiell ab:
mit
Ersetzt man in
die Kreiswellenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k aus dem Wellenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{k} = k \, \hat{e}_z wie folgt
(darin ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n der komplexe Brechungsindex)
so erhält man:
Es gilt $ I\propto |E|^{2} $.
Aus dem Absorptionskoeffizienten einer Probe lassen sich der Extinktionskoeffizient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n'' und der Absorptionsindex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa = \frac{n''}{n'} berechnen:
Als Faustregel für Photonenenergien über 50 keV gilt: Je höher die Energie, weniger dicht das Material und kleiner die Kernladungszahl des Materials, umso geringer ist der lineare Schwächungskoeffizient. Auch bei niedrigeren Energien steigt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu mit der Kernladungszahl Z des Materials steil an (proportional zur 4. Potenz). Deshalb ist Blei mit seiner hohen Dichte das bevorzugte Material für Abschirmungen.
Für praktische Zwecke wird oft der Massenschwächungskoeffizient bevorzugt. Er ergibt multipliziert mit der Dichte des Materials den linearen Schwächungskoeffizienten.