Die Kozeny-Carman-Gleichung, oder Carman-Kozeny'sche Gleichung, beschreibt im Bereich der Strömungsdynamik eine Relation, um den Druckverlust eines Fluids zu berechnen, der durch eine feinkörnige[1] Schüttung von Festkörpern verursacht wird. Sie ist benannt nach Josef Kozeny und Philip C. Carman. Die Gleichung gilt nur für laminare Strömungen. Sie besagt, dass sich der Volumenstrom $ {\frac {\mathrm {d} V}{\mathrm {d} t}} $ durch die Druckdifferenz und den Eigenschaften der Schüttung und des Fluids berechnen lässt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm dV}{\mathrm dt}={\varepsilon^3 \cdot \Delta p \cdot A \cdot d_\mathrm p^2 \over{(1- \varepsilon)^2 \cdot \eta_L \cdot H\cdot K}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varepsilon
= Porosität
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta p
= Druckdifferenz oberhalb und unterhalb der Substanzsäule
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
= Anströmfläche bzw. Querschnitt der durchströmten Substanzsäule
- $ \eta _{L} $ = Viskosität des durchströmenden Fluids
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H
= Höhe der Schüttung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_\mathrm p
= Partikeldurchmesser
Die Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K
ist messtechnisch zu bestimmen.[1] Fasst man die materialspezifischen Faktoren zu einem hydraulischen Widerstand $ R $ zusammen, so erhält man mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm dV}{\mathrm dt}={\Delta p \cdot A \over{ \eta_L \cdot R}}
die Darcy-Gleichung.[1]
Einzelnachweise
- ↑ 1,0 1,1 1,2 Walter Müller: Mechanische Grundoperationen und ihre Gesetzmäßigkeiten. Oldenbourg Verlag, 2008, ISBN 3-486-57842-1, S. 117 (eingeschränkte Vorschau in der Google-Buchsuche).