Die Clapeyron-Gleichung, die Émile Clapeyron 1834 entwickelte, liefert die Steigung aller Phasengrenzlinien im p-T-Diagramm eines Reinstoffes, d. h. z. B. auch zwischen zwei festen Phasen. Sie lautet:
mit
Die Clapeyron-Gleichung lässt sich für verschiedene Phasengrenzen spezifizieren; insbesondere folgende Übergänge werden durch sie bestimmt:
Die gesuchte Steigung der Phasengrenzlinien im p-T-Diagramm wird durch die noch unbekannte Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm {d}p/\mathrm {d}T beschrieben.
An einer Phasengrenzlinie, d. h. bei dem Wertepaar aus Druck p und Temperatur T, in dem zwei Phasen α und β im thermodynamischen Gleichgewicht koexistieren, besitzen diese beiden Phasen die gleichen chemischen Potentiale μ:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu_{ \alpha}\left( p,T \right)=\mu_{ \beta}\left( p,T \right)
|
(1)
| |
Da auf der gesamten Phasengrenzlinie auch bei infinitesimalen Veränderungen von p oder T Gleichung 1 gilt, muss auch die Veränderung der Potentiale immer gleich bleiben:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm {d}\mu_{\alpha} = \mathrm {d}\mu_{\beta}
|
(2)
| |
Aus der Gibbs-Duhem-Gleichung ist bekannt, dass
$ \mathrm {d} \mu =-S_{\mathrm {m} }\cdot \mathrm {d} T+V_{\mathrm {m} }\cdot \mathrm {d} p $
|
(3)
| |
Einsetzen in Gleichung 2 liefert
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow -S_{\alpha,\mathrm{m}} \mathrm {d}T + V_{\alpha,\mathrm{m}} \mathrm {d}p = -S_{\beta,\mathrm{m}} \mathrm {d}T + V_{\beta,\mathrm{m}} \mathrm {d}p
.
|
(4)
| |
Ausklammern von dp und dT sowie anschließende Umformung liefert die Clapeyron-Gleichung:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Leftrightarrow \frac{ \mathrm{d} p } { \mathrm{d} T } = \frac{ \Delta_\mathrm{trs} S } { \Delta_\mathrm{trs} V}
|
(5)
| |
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_\mathrm{trs} S = S_{\beta,\mathrm{m}} - S_{\alpha,\mathrm{m}}
bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_\mathrm{trs} V = V_{\beta,\mathrm{m}} - V_{\alpha,\mathrm{m}}
Für reversible Vorgänge kann die Umwandlungsentropie aus der dabei umgesetzten Wärmemenge Qrev berechnet werden, die bei isobaren Vorgängen gleich der Änderung der molaren Enthalpie Hm ist:
$ \Delta S_{\mathrm {m} }={\frac {Q_{\mathrm {rev} }}{T}}={\frac {\Delta H_{\mathrm {m} }}{T}} $
|
(6)
| |
Damit erhält man die Clausius-Clapeyron-Gleichung.