Coulomb-Eichung

Coulomb-Eichung

Die Coulomb-Eichung (nach ihrem Zusammenhang mit dem Coulomb-Potential (s. u.); auch Strahlungseichung oder transversale Eichung genannt) ist eine mögliche Eichung der Elektrodynamik, beschreibt also eine Einschränkung der elektrodynamischen Potentiale.

Eichfreiheit der Elektrodynamik

Um die Lösung der Maxwell-Gleichungen zu erleichtern, führt man für das elektrische Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec E und das magnetische Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B das Skalarpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Phi und das Vektorpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec A ein, welche die klassisch beobachtbaren Felder beschreiben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec E(\vec r, t) = -\nabla \Phi - \partial_t \vec A(\vec r, t)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec B(\vec r, t )= \nabla \times \vec A(\vec r, t) .

Diese Definition erlaubt Eichfreiheiten in der Wahl von Skalar- und Vektorpotential, die keine Auswirkungen auf messbare Größen haben, insbesondere nicht auf elektrisches Feld und magnetische Flussdichte.

Die Coulomb-Eichung

Diese Eichfreiheit wird in der Coulomb-Eichung dazu genutzt, die Divergenzfreiheit des Vektorpotentials zu fordern:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nabla \cdot\vec A(\vec r, t) = 0

Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta =\nabla\cdot \nabla und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial}{\partial t}\nabla =\nabla\frac{\partial}{\partial t} folgen daraus die im nächsten Paragraphen notierten Resultate.

Die inhomogenen Maxwell-Gleichungen in der Coulomb-Eichung

Setzt man mit dieser Eichung die Potentiale in die inhomogenen Maxwell-Gleichungen (das gaußsche Gesetz und das erweiterte Induktionsgesetz) ein, so erhält man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta\Phi = -\frac{\rho}{\varepsilon_0}

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta\vec A - \frac{1}{c^2}\partial^2_t \vec A =- \mu_0 \vec j + \frac{1}{c^2} \nabla \partial_t \Phi \,\, (=: \, -\mu_0\vec j_\mathrm{eff}) .

Die erste Gleichung wird gelöst durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Phi(\vec r,t) = \frac{1}{4 \pi \varepsilon_0} \int\frac{\rho(\vec r^\prime,t)}{\left| \vec r - \vec r^\prime \right| }\mathrm{d}^3r^\prime ,

also ist in dieser Eichung das Skalarpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Phi identisch mit dem Coulomb-Potential.

Die zweite Gleichung ist eine inhomogene Wellengleichung mit der durch die Methode des retardierten Potentials gewonnenen Lösung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec A(\vec r,t) = \frac{\mu_0}{4\pi} \int \frac{\vec j_\mathrm{eff}(\vec r^\prime, t')}{\left| \vec r - \vec r^\prime \right|}\mathrm{d}^3r^\prime .

Dabei ist die retardierte Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t' gegeben durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t' := t - \frac{|\vec r - \vec r^\prime |}c  . Physikalisch entspricht die zuletzt angegebene Differenz der Zeitspanne, die ein Licht- oder Radarsignal braucht, um die Strecke vom Ausgangspunkt (dem Integrationpunkt) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r' der Signale zum Ankunftspunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r zu durchlaufen (c ist die Lichtgeschwindigkeit).

In der Nutzung zweier unterschiedlicher Zeiten in den Integralen – erstens t beim skalaren Potential, zweitens t′ beim Vektorpotential – besteht der Hauptvor- bzw. -nachteil der Coulomb-Eichung. Die konkurrierende Lorenz-Eichung hat diesen Nachteil nicht, sondern ist explizit relativistisch invariant, indem sie die Retardierung durchgehend berücksichtigt.

Sind keine Quellen (Ladungen und Ströme) vorhanden, so vereinfachen sich die Gleichungen zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta\Phi = 0

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta \vec A - \frac{1}{c^2} \partial^2_t \vec A = 0 ,

das Vektorpotential erfüllt also die homogene Wellengleichung.

Literatur

  • John D. Jackson: Klassische Elektrodynamik. Walter de Gruyter Berlin New York, 2006, ISBN 978-3-11-018970-4.

en:Gauge fixing#Coulomb gauge