Das curiesche Gesetz (auch Curie-Gesetz genannt) beschreibt die Abhängigkeit der magnetischen Suszeptibilität
Man erhält das Gesetz, wenn man ein ideales System aus
Als Modell nimmt man die Ausrichtung eines Spin-½-Teilchens in einem äußeren Magnetfeld. Das Elektron hat ein magnetisches Moment und verhält sich als magnetischer Dipol. Legt man ein äußeres Magnetfeld an, so übt dieses eine richtende Kraft auf den Spin des Elektrons aus. Es ist eine Ausrichtung des Spins in Richtung des Magnetfeldes möglich, die energetisch günstig ist, und eine zum Magnetfeld entgegengesetzte Ausrichtung, die energetisch ungünstig ist. Zunächst würde man erwarten, dass sich in einer Substanz alle Spins parallel zum äußeren Magnetfeld ausrichten. Tatsächlich besteht jedoch eine Temperaturabhängigkeit, die zurückzuführen ist auf:
Die magnetische Suszeptibilität
mit der Curie-Konstanten
Darin ist
Oft werden magnetische Suszeptibilität und Curie-Konstante statt auf das Volumen
mit
wobei
Das magnetische Moment
Hierin ist
Im äußeren Magnetfeld
Die jeweils zugehörige Energie ist gegeben durch:
Die Energiedifferenz zwischen den beiden Zuständen beträgt:
Im kanonischen Ensemble, d. h. bei konstanter Temperatur und konstanter Teilchenzahl, ergibt sich aus der Boltzmann-Statistik die Besetzungswahrscheinlichkeit
mit der Energienormierung
Aus den Besetzungswahrscheinlichkeiten ergibt sich die Formel für die Magnetisierung
Dabei bezeichnet
Die magnetische Suszeptibilität hängt mit der Magnetisierung wie folgt zusammen:
Das curiesche Gesetz erhält man als Näherung unter der Annahme, dass der magnetische Einfluss klein gegenüber dem Temperatureinfluss ist, also bei relativ schwachen Magnetfeldern und relativ hohen Temperaturen:
Hierin ist
Für Mehrelektronen-Systeme kann das Curie-Gesetz nur begrenzt angewendet werden, da interelektronische Wechselwirkung und Spin-Bahn-Kopplung zu Komplikationen führen. Für den Fall einer reinen LS-Kopplung, bei der der elektronische Grundzustand thermisch isoliert ist, kann die Curie-Konstante wie folgt formuliert werden:
mit
Die Quantenzahlen
Die Quantenzahlen
Bei Mehrelektronen-Systemen, die zusätzlich zur LS-Kopplung und thermischen Isolierung des Grundzustandes auch eine Halbbesetzung einer Unterschale aufweisen, spricht man von Spin-Only-Systemen. Der Name stammt daher, dass bei Halbbesetzung die Gesamtbahndrehimpuls-Quantenzahl
Der Landé-Faktor lautet dann bei
Die Curie-Konstante ergibt sich zu:
Das ideale Curie-paramagnetische Verhalten tritt relativ selten auf, da zahlreiche Faktoren (Interelektronische Wechselwirkung, Spin-Bahn-Kopplung, Anisotropie, Ligandenfeld-Effekte, kollektive Effekte) das magnetische Verhalten eines Stoffes stark beeinflussen. Bei den Hauptgruppenelementen zeigen Radikale spin-paramagnetisches Verhalten, z. B. das Sauerstoff-Molekül mit zwei ungepaarten Elektronen. Bei den Nebengruppenelementen findet man Curie-Paramagnetismus nur bei Atomen mit LS-Kopplung und thermisch isoliertem Grundzustand.
Spin-Only-Paramagnetismus findet man bei einigen Verbindungen mit schwachem Ligandenfeld von Mn
Bei Auftreten kollektiver magnetischer Effekte, also bei Ferromagnetismus, Antiferromagnetismus oder Ferrimagnetismus, gilt statt des curieschen Gesetzes das Curie-Weiss-Gesetz:
Hierin ist