Eine Messung ist der experimentelle Vorgang, durch den ein spezieller Wert einer physikalischen Größe als Vielfaches einer Einheit oder eines Bezugswertes ermittelt wird.[1][2]
Die Messung ergibt zunächst einen Messwert. Dieser stimmt aber aufgrund störender Einflüsse mit dem wahren Wert der Messgröße praktisch nie überein, sondern weist eine gewisse Messabweichung auf. Zum vollständigen Messergebnis wird der Messwert, wenn er mit quantitativen Aussagen über die zu erwartende Größe der Messabweichung ergänzt wird. Dies wird in der Messtechnik als Teil der Messaufgabe und damit der Messung verstanden.[3]
Die meisten physikalischen Größen können nicht direkt gemessen werden. Stattdessen werden mit dafür geeigneten Messgeräten eine oder mehrere andere Größen gemessen, die dann einen Rückschluss auf die eigentliche Messgröße zulassen. So messen beispielsweise die meisten Waagen nicht tatsächlich die Masse eines Körpers, sondern dessen Gewichtskraft im Schwerefeld der Erde. Trotzdem wird eine Masse in der entsprechenden Einheit (z. B. in Kilogramm) angezeigt.
Mit den theoretischen Grundlagen und der praktischen Umsetzung von Messungen befassen sich die Metrologie und die Messtechnik. Der dort geprägte Begriff „Messung“ wird auch auf andere Gebiete übertragen, wobei er allerdings mit einem anderen Sinn belegt wird. Beispielsweise scheitert eine Übertragung dieser Messvorstellung auf die Sozialwissenschaften daran, dass Maßeinheiten in diesem Sinne in den Sozialwissenschaften bislang fehlen.[4]
In DIN 1319 ist die Messung wie folgt definiert:
„Eine Messung ist das Ausführen von geplanten Tätigkeiten zu einer quantitativen Aussage über eine Messgröße durch Vergleich mit einer Einheit.“
Die Messgröße ist eine physikalische Größe, also ein Merkmal eines physikalischen Objekts, das quantifiziert werden kann. Sie besitzt somit ähnliche Eigenschaften wie die Zahlen in der Mathematik. Insbesondere kann man Größen gleicher Art addieren und miteinander vergleichen und man kann eine Größe durch die Multiplikation mit einem Faktor vervielfachen. Man beachte, dass dies nicht für alle Eigenschaften von Objekten gilt. Der Geruch eines Stoffes erfüllt diese Kriterien beispielsweise nicht. Daher ist er auch keine messbare Eigenschaft und kann nicht durch eine physikalische Größe beschrieben werden.
Wird nicht ein zahlenmäßiger Wert einer Größe bestimmt, sondern nur ermittelt, ob ein Objekt ein bestimmtes Kriterium erfüllt oder nicht, so spricht man nicht von Messen, sondern von Prüfen. Beispielsweise prüft ein Durchgangsprüfer, ob eine leitende Verbindung zwischen zwei Punkten besteht, während ein Widerstandsmessgerät misst, wie sehr der elektrische Strom durch den elektrischen Widerstand zwischen zwei Punkten behindert wird.
Um eine Messung durchführen zu können, müssen drei Aspekte der Messgröße klar definiert sein: Einheit, Gleichheit und Vielfachheit.[5]
Sind diese drei Aspekte genau festgelegt, so ist die Größe messbar. Die Messgröße kann nun (zumindest prinzipiell) mit der Einheit verglichen und als Vielfaches von ihr dargestellt werden. Der Messwert ist also immer das Produkt aus einer reinen Zahl (der Maßzahl) und einer Einheit. Die Maßzahl alleine (ohne Einheit) hat keinerlei Aussagekraft über den Wert der Größe und erhält erst durch die Angabe der Einheit ihre Bedeutung.
Nur in den aller wenigsten Fällen kann man aber die Messgröße direkt mit der Maßeinheit vergleichen. Dies gelingt vielleicht bei der Messung von Längen durch das Anlegen eines Lineals an einen Gegenstand oder bei der Messung der Masse durch die Verwendung einer Balkenwaage. Meistens misst man jedoch eine oder mehrere andere, messtechnisch eher zugängliche Größen, die aufgrund eines bekannten physikalischen Effekts mit der Messgröße zusammenhängen, wenn sich jene einer direkten Messung entzieht. Ein bekanntes Beispiel ist das Flüssigkeitsthermometer zur Temperaturbestimmung. Es nutzt eine Flüssigkeit, die sich bei einer Zunahme der Temperatur ausdehnt. Wenn man also die Länge der Flüssigkeitssäule in einem Steigrohr mit konstantem Querschnitt misst, kann man daraus auf die Temperatur rückschließen. Ist der Zusammenhang linear (beim Flüssigkeitsthermometer ist das in guter Näherung der Fall), dann genügt es, wenn man zwei Fixpunkte kennt, um eine Skala anzubringen. In vielen Fällen ist der Zusammenhang jedoch nichtlinear. Dann muss vor der eigentlichen Messung eine große Zahl von Referenzmessungen durchgeführt werden, um jedem Anzeigewert einen Wert der Messgröße zuordnen zu können. Dieser Zusammenhang kann in Form einer Kalibrierfunktion oder grafisch als Kalibrierkurve dargestellt werden.
Weiterhin ist zu unterscheiden, ob das verwendete Messgerät analog oder digital arbeitet. Bei einer analogen Messung wird der Messwert durch eine stufenlose Verarbeitung des Messsignals ermittelt, bei einer digitalen Messung durch eine stufenweise Verarbeitung (DIN 1319-2).
Jede Messung unterliegt störenden physikalischen Einflüssen, die nicht alle bekannt oder kontrollierbar sind. Der erhaltene Messwert weicht daher praktisch immer vom wahren Wert der Größe ab, die Differenz ist die Messabweichung. Die Größe der Messabweichung eines bestimmten Messwerts ist prinzipiell unbekannt, weshalb es unmöglich ist, durch Messung den wahren Wert einer Größe exakt zu bestimmen. Exakte Werte treten nur auf, wenn sie durch Definition festgelegt sind, z. B. die Vakuumlichtgeschwindigkeit. Der Messwert stellt somit nur eine Annäherung an den wahren Wert dar. Wie gut diese Annäherung gelungen ist, wird durch die Messunsicherheit ausgedrückt. Sie gibt die Breite des Wertebereichs an, in dem der wahre Wert der Messgröße mit großer Wahrscheinlichkeit liegt.
Bei der Messabweichung unterscheidet man zwei Komponenten:
Am Ende korrigiert man den erhaltenen Messwert (bei einer Messreihe identischer Messungen den Mittelwert) um die systematischen Abweichungen, soweit sie bekannt sind, und kann das Ergebnis als den bestmöglichen „Schätzwert“ für den wahren Wert der Messgröße ansehen. Für die Messunsicherheit, die mit anzugeben ist, kombiniert man den Beitrag der zufälligen Abweichungen mit demjenigen Unsicherheitsbereich, der aus ungenauer Kenntnis von systematischen Störeinflüssen resultiert.
Es soll die Dichte eines unbekannten Gases bestimmt werden. Hierzu wird ein Glaskolben mit einem Volumen von 1 Liter mit dem Gas befüllt und gewogen. Mehrere Wägungen ergeben im Mittel einen Wert von 0,751825 g für den Inhalt des Kolbens. Allerdings erfahren alle Körper in Luft einen gewissen Auftrieb (so auch der Glaskolben). Der Messwert weicht deshalb systematisch vom wahren Wert ab, und zwar um das Gewicht der verdrängten Luft. In diesem Fall entspricht das 1,225 g. Der Mittelwert muss um diesen Wert nach oben korrigiert werden. So erhält man einen korrigierten Mittelwert von 1,97825 g. Die einzelnen Messwerte streuen aufgrund unbekannter Störeinflüsse. Die Standardabweichung ihres Mittelwerts (die hier grob vereinfachend als Maß für die Unsicherheit herangezogen wird) betrage beispielsweise 0,00443 g. Die vollständige Angabe des Messergebnisses lautet also: „$ \rho =\mathrm {1,9782\,g\,dm^{-3}} $ mit einer Unsicherheit von $ \mathrm {0,0044\,g\,dm^{-3}} $“. (Man beachte, dass nur so viele Stellen des Messergebnisses angegeben werden, wie auch durch die Analyse der Unsicherheit als gesichert gelten können.) Vergleicht man das Messergebnis mit Tabellenwerten, so findet man dort als Referenzwert für Kohlenstoffdioxid 1,9767 g dm−3, was im Rahmen der Messunsicherheit gut mit dem Messwert übereinstimmt.
Zum Messen gehören:
„Die wissenschaftliche Grundlage eines Messverfahrens.“ (VIM: 1994); „Physikalische Grundlage der Messung.“ (DIN 1319-1:1995),
z. B. die Lorentzkraft als Grundlage einer Messung der elektrischen Stromstärke.
„Spezielle, vom Messprinzip unabhängige Art des Vorgehens bei der Messung“ (DIN 1319-1),
z. B. Ausschlags-Messmethode, Nullabgleichs-Messmethode, Differenz-Messmethode
oder – nach anderem, davon unabhängigem Gesichtspunkt – analoge Methode, digitale Methode, siehe unten oder Digitale Messtechnik.
„Praktische Anwendung eines Messprinzips und einer Messmethode“ (DIN 1319-1),
z. B. Masseermittlung mit einer Balkenwaage und Gewichtsstücken nach der Nullabgleichs-Messmethode.
Größe, die nicht Gegenstand der Messung ist, jedoch die Messgröße oder die von der Messeinrichtung gelieferte Information über den Messwert beeinflusst (nach DIN 1319-1), (siehe auch Querempfindlichkeit),
z. B. Umgebungstemperatur, elektromagnetische Feldstärke.
Ein Messgerät wird definiert als „Gerät, das allein oder in Verbindung mit anderen Einrichtungen für die Messung einer Messgröße vorgesehen ist“ (DIN 1319-1). Zu allgemeinen Merkmalen von Messgeräten siehe Messmittel.
Häufig ist ein Messgerät Bestandteil einer Messeinrichtung, die definiert wird als „Gesamtheit aller Messgeräte und zusätzlicher Einrichtungen zur Erzielung eines Messergebnisses“ (ebenfalls DIN 1319-1).
Die Bezeichnung Messinstrument kommt im „Glossar der Metrologie“[8] nicht vor, in DIN 1319-1:1995 gilt als Übersetzung von „en: Measuring instrument“ ebenfalls Messgerät.
Das Messwerk ist in einem mechanischen Messgerät der aktive Teil. Zum Messwerk gehören das bewegliche Organ mit Zeiger und für die Wirkungsweise wichtigen Teile, z. B. Dauermagnet, Spule.
„Träger der Messgröße“ – „Messobjekte können Körper, Vorgänge oder Zustände sein.“ (DIN 1319-1), z. B.
Messbar ist eine Größe, wenn es ein Messprinzip gibt, nach der sie sich messen lässt, wenn sie also innerhalb physikalischer Betrachtungsweise sinnvoll definiert werden kann, und daher insbesondere quantifizierbar ist. Dies umfasst auch alle Ansprüche der Reproduzierbarkeit des Messergebnisses.
Messbar sind physikalische Größen. Manche nicht physikalische Größen lassen sich auf physikalische Größen zurückführen wie Lautstärke auf Schalldruck, Farbwahrnehmungen auf die Verteilung im Lichtspektrum.
Die Ermittlung von nicht physikalischen Größen, wie beispielsweise die mit statistischen Methoden gewonnene Inflationsrate, der Intelligenzquotient oder die Kundenzufriedenheit, wird teilweise auch als Messung bezeichnet. Aus physikalischer Sicht wird dies in der Regel bestritten, da eine physikalisch definierte Einheit fehlt. Siehe auch: Operationalisierung (Messbarmachung)
Ein nur subjektiv beurteilbares Merkmal wie z. B. Schönheit (etwa einer Farbe) oder Schlauheit ist nicht allgemein anerkannt definiert und allein schon dadurch auch nicht quantitativ angebbar.
Werte, die zu klein sind, um mit heutigen Methoden gemessen werden zu können, werden zwar zuweilen als „unmessbar“ bezeichnet, sind aber lediglich „nicht erfassbar“.
In der Kopenhagener Deutung der Quantenmechanik nimmt die Messung einen entscheidenden Platz ein. Dies drückt sich darin aus, dass es neben der Schrödingergleichung, die die Zeitentwicklung eines quantenmechanischen Zustands beschreibt, auch eigene Gesetze zum Verhalten des Systems bei einer quantenmechanischen Messung gibt. Die Unschärferelation beschreibt außerdem eine fundamentale Grenze für Messungen, unabhängig von der Genauigkeit der Apparate. Aber auch in der klassischen Physik gibt es Grenzen für die Genauigkeit von Messungen, da jede Messung eine Wechselwirkung sein muss. Aus der Elektrotechnik kommt ein bekanntes Beispiel der Beeinflussung des Messobjektes durch die Messung selbst, siehe Rückwirkungsabweichung. Diese bewirkt, dass die Leerlaufspannung einer realen Spannungsquelle mit realen Messgeräten nicht exakt messbar ist.
Ferner ist zu bedenken, dass die Lichtgeschwindigkeit einen endlichen Wert aufweist, sodass die Information Zeit braucht, um vom beobachteten Objekt zum beobachtenden Subjekt zu gelangen. Daher sieht man immer ein Bild der Vergangenheit und kann nicht beobachten, was im exakten Zeitpunkt der Messung gerade passiert. Nicht einmal der Begriff „Gegenwart“ kann (nach der Relativitätstheorie) für zwei Beobachter derselbe sein, wenn sie sich gegeneinander bewegen.