Die Einstein-Infeld-Hoffmann-Gleichung ist eine Bewegungsgleichung, die gemeinsam von Albert Einstein, Leopold Infeld und Banesh Hoffmann entwickelt wurde.
Es ist eine Differentialgleichung, die die Kinetik eines Systems aus punktförmigen Massen unter gegenseitiger Gravitationsanziehung
näherungsweise unter Berücksichtigung von allgemein-relativistischen Effekten beschreibt.
Sie benutzt eine post-newtonsche Erweiterung erster Ordnung und ist damit in Bereichen gültig, in denen die Geschwindigkeiten der Massen klein im Vergleich zu der Lichtgeschwindigkeit und die Gravitationsfelder, die auf sie wirken, entsprechend schwach sind.
Für ein System aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N
Massen, die durch die Indizes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A = 1,\dotsc,N
bezeichnet werden,
ist der baryzentrische Beschleunigungsvekter des Körpers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
gegeben durch:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \vec{a}_A & = \sum_{B \not = A} \frac{G m_B \vec{n}_{BA}}{r_{AB}^2} \\ & \quad + \frac{1}{c^2} \sum_{B \not = A} \frac{G m_B \vec{n}_{BA}}{r_{AB}^2} \left[ v_A^2+2v_B^2 - 4( \vec{v}_A \cdot \vec{v}_B) - \frac{3}{2} ( \vec{n}_{AB} \cdot \vec{v}_B)^2 \right. \\ & \qquad \left. - 4 \sum_{C \not = A} \frac{G m_C}{r_{AC}} - \sum_{C \not = B} \frac{G m_C}{r_{BC}} + \frac{1}{2}( (\vec{x}_B-\vec{x}_A) \cdot \vec{a}_B ) \right] \\ & \quad + \frac{1}{c^2} \sum_{B \not = A} \frac{G m_B}{r_{AB}^2}\left[\vec{n}_{AB}\cdot(4\vec{v}_A-3\vec{v}_B)\right](\vec{v}_A-\vec{v}_B) \\ & \quad + \frac{7}{2c^2} \sum_{B \not = A}{ \frac{G m_B \vec{a}_B }{r_{AB}}} \end{align}
Dabei gilt:
- $ {\vec {x}}_{A} $ ist der baryzentrische Ortsvektor des Körpers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{v}_A=d\vec{x}_A/dt
ist der baryzentrische Geschwindigkeitsvektor des Körpers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{a}_A=d^2\vec{x}_A/dt^2
ist der baryzentrische Beschleunigungsvektor des Körpers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
- $ r_{AB}=|{\vec {x}}_{A}-{\vec {x}}_{B}| $ ist der metrische Abstand der Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{n}_{AB}=(\vec{x}_A-\vec{x}_B)/r_{AB}
ist der Einheitsvektor, der von Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B
auf Körper $ A $ zeigt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_A
ist die Masse des Körpers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c
ist die Lichtgeschwindigkeit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G
ist die Gravitationskonstante.
Der erste Term auf der rechten Seite entspricht der newtonschen Gravitationsbeschleunigung auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A
.
Im Grenzwert $ c\to \infty $ erhält man die newtonsche Bewegungsgleichung.
Die Beschleunigung eines bestimmten Körpers hängt von den Beschleunigungen aller anderen Körper ab.
Da der Beschleunigungsvektor auf beiden Seiten der Gleichung auftaucht, muss das Gleichungssystem iterativ gelöst werden.
In der Praxis genügt jedoch die newtonsche Bewegungsgleichung, um genügend Genauigkeit zu erreichen.[1]
Anwendung
Die Einstein-Infeld-Hoffmann-Gleichung findet Anwendung in der Bestimmung des International Celestial Reference System (ICRF). Dazu wird die Ephemeriden der Planeten durch Integration der Gleichung berechnet, woraus die dynamische Realisierung des ICRF resultiert.
Literatur
- Albert Einstein, L. Infeld, B. Hoffmann: The Gravitational Equations and the Problem of Motion. Annals of Mathematics Second series 39 (1): S. 65–100, 1938.
- Jean Kovalevsky, P. Kenneth Seidelmann: Fundamentals of Astrometry , New York: Cambridge University Press. S. 173. , 2004.
Einzelnachweise