Das Fabry-Pérot-Interferometer, auch Pérot-Fabry-Interferometer, wurde 1897 von den französischen Physikern Charles Fabry und Alfred Pérot entwickelt. Es ist ein optischer Resonator, der aus zwei teildurchlässigen Spiegeln gebildet wird. Ist der Spiegelabstand unveränderbar (bspw. Glas mit aufgedampften Spiegeln), so werden diese Aufbauten auch als Maßverkörperung benutzt und dann als Fabry-Pérot-Etalon bezeichnet. Ein eintreffender Lichtstrahl wird nur dann durch diesen Aufbau geleitet (transmittiert), wenn er dessen Resonanzbedingung erfüllt.
Damit lässt sich das Fabry-Pérot-Interferometer u. a. als optischer Filter einsetzen, der aus einer breitbandigen Strahlung ein schmalbandiges Spektrum herausfiltert. Spiegelverschiebungen ermöglichen es darüber hinaus, die spektralen Eigenschaften der transmittierten Strahlung einzustellen. Das Transmissionsverhalten lässt sich mit der Airy-Formel berechnen.
Das Fabry-Pérot-Interferometer besteht aus zwei teilreflektierenden Spiegeln hoher Reflektivität, die miteinander einen optischen Resonator bilden. Das Transmissionsspektrum dieser Anordnung zeigt schmale Transmissions-Maxima für Wellenlängen, welche die Resonanzbedingung erfüllen, während andere Spektralbereiche in der Transmission nahezu vollständig ausgelöscht werden. Dies geschieht durch konstruktive bzw. destruktive Interferenz der Teilstrahlen.
Der Abstand
Die Finesse
Ein alternatives Maß ist der Finesse-Koeffizient
definiert ist.
Je größer die Finesse, desto mehr Strahlenbündel interferieren miteinander und desto schärfer sind also die Interferenzringe. Einfachste Fabry-Pérot-Interferometer erreichen bei sichtbarem Licht Finessen von ungefähr
Mit dielektrischen Dünnschichtbelägen und gekrümmten Spiegeln lassen sich Finessen bis zu
Bei steigender Finesse wächst bei Resonanz die Intensität bzw. Feldstärke der Lichtwellen innerhalb des Interferometers bzw. Resonators auf Werte an, die wesentlich höher sind als diejenigen des durchtretenden Lichtes. Diese Tatsache muss bei Anwendungen, bei denen die Leistung im Vordergrund steht, berücksichtigt werden (z. B. bei Laser-Resonatoren und -Modulatoren).
Die transmittierte Intensität berechnet sich zu
Mit der Phasendifferenz (siehe Durchmesser der Interferenzringe unten)
ergibt sich weiter
Die Resonanzmaxima sind die longitudinalen Moden eines Lasers. Je nach dessen Verstärkungsbandbreite kann er auf einer oder auf mehreren dieser Moden anschwingen bzw. „lasern“.
Der Wegunterschied
mit der Phasendifferenz
Mit der Interferenzordnung
und aufgelöst nach
Daraus folgen Resonanzwellenlänge und Resonanzfrequenz der Ordnung
und
Zu jedem Interferenzring gehört also ein Winkel
und führt zu:
Um den Abstand der Interferenzringe besser zu veranschaulichen genügt eine Taylor-Entwicklung von:
Mit einer Kleinwinkelnäherung ergibt sich für den Ringdurchmesser
Setzt man nun
Gleichzeitig ergibt sich für die Resonanzwellenlänge und Resonanzfrequenz:
und
Löst man nach
Dabei ist die Interferenzordnung
Für die Resonanzwellenlänge und die Resonanzfrequenz des p-ten Ringes gilt:
Somit lässt sich zu jedem Ringdurchmesser eine Wellenlänge
Das Fabry-Pérot-Interferometer wird angewendet: