Die Geschichte der Astronomie umfasst zeitlich die gesamte Kulturgeschichte der Menschheit. Die Astronomie entstand schon in der Steinzeit aus der Einheit von Sonnen- und Gestirnsbeobachtung und kultischer Verehrung der Gestirne.[1] Aus freiäugigen Beobachtungen des Sternhimmels und seiner Zyklen entwickelte sich die klassisch-geometrische Astronomie, deren älteste Teilgebiete die Positionsastronomie und Ephemeridenrechnung sind. Starke Impulse gaben die Erfindung des Fernrohrs (1609) und spezieller Messgeräte bis hin zur Himmelsmechanik, zur modernen Astrophysik und dem Einsatz von Radio- und Weltraumteleskopen.
Die Sternkunde bestimmt das Selbstbild des Menschen und seine Auffassung von seiner Stellung im Universum mit, heutzutage vor allem durch die Diskussionen über die Entstehung des Universums und die Suche nach bewohnbaren Planeten und Leben außerhalb unseres Sonnensystems.
Für vorgeschichtliche Himmelsbeobachtungen liegen nur vereinzelt Indizien vor, darunter Wandmalereien in der Höhle von Lascaux (ca. 17.000 bis 15.000 v. Chr.),[2] in denen vielleicht die Plejaden, der Tierkreis und der Sommerhimmel dargestellt sind, sowie ein beim Felsdach Abri Blanchard in Frankreich gefundener Flügelknochen eines Adlers mit Punktmarkierungen, deren Zahl und Anordnung möglicherweise mit den Mondphasen zusammenhängen. Allerdings beweist der Mangel an relevantem archäologischem Fundmaterial nicht, dass für die vorgeschichtliche Menschheit die Himmelsbeobachtung generell keine Rolle spielte. Jedenfalls ist bei heutigen Jäger-und-Sammler-Kulturen, etwa den Aborigines, derartiges durchaus bezeugt.
In der Jungsteinzeit ändert sich die Quellenlage merklich. Der Beginn einer Kalenderrechnung, die genaue Kenntnisse über Mond- und Sonnenbahn und die Jahreszeiten voraussetzte, war für landwirtschaftliche Kulturen und die Planung ihrer Aussaat lebenswichtig. Damit waren religiöse Deutungen der Himmelsphänomene und ihrer möglichen Ursachen verbunden.
Es ist denkbar, dass der Übergang zum Ackerbau zur Ausbildung verschiedener Astralkulte und zu den Anfängen einer Astronomie und auch zur Entstehung der Astrologie (sowohl der westlichen als auch der asiatischen) beigetragen hat. Zahlreiche Gräber dieser Zeit waren nach einer bestimmten Himmelsrichtung ausgerichtet. Zu den archäologischen Funden, die in einem Zusammenhang mit Kalendern stehen, zählen die in Süddeutschland und Frankreich gefundenen Goldhüte, die als sakrale Kopfbedeckung von Priestern eines Sonnenkults gedeutet werden, und die Himmelsscheibe von Nebra. Die vor etwa 7000 Jahren errichtete Kreisgrabenanlage von Goseck wird als das älteste Sonnenobservatorium der Welt bezeichnet. Die beeindruckendste prähistorische Kultstätte Europas ist Stonehenge im südlichen England mit seinen Megalith-Steinkreisen. Über die dort praktizierten Kulte ist nichts überliefert, lassen sich aber zumindest für die Sonnenwenden annehmen.[3] In jedem Fall beweist die geografische Ausrichtung des Bauwerks und spezieller Visurlinien astronomische Bezüge. Ähnliches lässt sich weltweit für Kultbauten aus vielen Epochen zeigen.
Mit der Archäoastronomie gibt es seit den 1970er Jahren ein eigenes Fachgebiet, das sich mit der Erforschung dieser Bauten und Funde unter astronomischem Gesichtspunkt befasst.
Die erste Mondfinsternis, deren Beobachtung angeblich überliefert ist, ist diejenige vom 17. Januar 3380 v. Chr., die von den Maya in Mittelamerika verzeichnet worden sein soll. Diese Annahme ist allerdings umstritten, da die Forschung davon ausgeht, dass die Maya ihren Kalender frühestens nach 3373 v. Chr. einführten. Vereinzelte Behauptungen, dass er bereits früher begann, haben sich bisher nicht beweisen lassen.[4] In China wurde die erste Sonnenfinsternis im Jahre 2137 v. Chr. aufgezeichnet.[5]
Auch die Ägypter und Mesopotamier beobachteten den Himmel und beteten Astralgottheiten an. Auf den 6. Juni 763 v. Chr.[6] fällt die erste sicher datierbare Beobachtung einer Sonnenfinsternis in Mesopotamien.
Die Himmelsschau war auch in den alten Hochkulturen Nordafrikas und des Nahen Ostens mit Mythologie und Religion verknüpft.
Im Gegensatz zu Nordeuropa, in dem man sich bei der Erforschung der vorgeschichtlichen Astronomie nur auf archäologische Kenntnisse stützen kann, existieren für Ägypten bis in das 3. Jahrtausend v. Chr. zurückreichende schriftliche Aufzeichnungen über Techniken und Bedeutung der altägyptischen Astronomie. Die damaligen astronomischen „Forschungen“ und Deutungen müssen auch im Rahmen des im damaligen Ägypten herrschenden Sonnenkultes sowie der Bemühungen zur Berechnung des genauen Eintritts der Nilschwemme verstanden werden.[7]
Die Ägypter nutzten für die Nacht zwölf Sterne zur Zeitmessung, wobei die Länge des jeweils ersten und letzten Zeitabschnitts je nach Jahreszeit angepasst wurde. Der mythologische Hintergrund der Zwölf Nachtsterne („Sterne, die nie untergehen“) war der Glaube, dass die nächtliche Überfahrt der verstorbenen Könige mit dem Sonnengott Re unter dem Schutz der Zwölf Wächter des Nachthimmels stattfand. Sie begann mit der einsetzenden Dämmerung und endete mit dem Sonnenaufgang.[8] Sternbilder spielten ebenfalls eine wichtige Rolle. Sie enthielten die Sterne verschiedener Götter. Die älteste Darstellung des Nachthimmels findet sich auf der Unterseite eines Sarges in Assiut,[9] eine weitere in der Grabkammer des Senenmut (Thebener Grab TT353). Die Darstellung der Sternbilder, die dann üblich wurde – so auch im Grab des Königs Sethos I. um 1279 v. Chr. – stimmt nicht mit der heutigen Einteilung der Sternbilder überein.
Welche Messmethoden die ägyptischen Astronomen genau benutzten, ist nicht überliefert. Im ägyptischen Kalender spielte Sirius eine besondere Rolle, da sein heliakischer Aufgang ab etwa 2000 v. Chr. die Nilüberschwemmung ankündigte. Ursprünglich scheint Sirius aber mit dem Schönen Fest vom Wüstental in Verbindung zu stehen. Da das ägyptische Jahr damals 365 Tage lang war, änderte sich das Datum des heliakischen Aufgangs des Sirius langsam; er fiel nach Ablauf eines Zyklus von 1440 bis 1460 Jahren wieder auf dasselbe Datum des ägyptischen Kalenders. Die Geschichte der altägyptischen Religion zeigt, dass die Priester über ihr astronomisches Wissen wachten und noch um 221 v. Chr. eine Reform des Kalenders mit einer verbesserten Jahreslänge von 365,25 Tagen rückgängig machten. Dies mag damit zusammenhängen, dass die Priester für die Berechnung der religiösen Festtage, die sich bei einem 365-Tage-Kalender langsam verschoben, zuständig waren; diese Aufgabe wäre ihnen bei einem korrigierten Kalender mit 365,25 Tagen abhandengekommen. Bemerkenswert ist auch eine Ansicht, die Tycho 2000 Jahre später vertrat: dass Venus und Merkur um die Sonne kreisen, diese aber um die Erde.[10]
An der mesopotamischen Astronomie ist neben dem frühen Beginn genauer Beobachtungen – dem 3. Jahrtausend v. Chr. – bemerkenswert, wie präzise die Messreihen auf tausenden Tontafeln aufgezeichnet wurden.
Damals kannten die Babylonier alle wichtigen Himmelszyklen mit erstaunlicher Genauigkeit:[11] u. a. den synodischen Monat mit 29,53062 Tagen (statt 29,53059), den Venus- und Marsumlauf (nur 0,2 bzw. 1 Stunde fehlerhaft) oder den 18-jährigen Saroszyklus der Finsternisse. Unsere Stundenzählung und die 360° wurden in Babylon entwickelt. Die ekliptiknahen Sternbilder waren in drei Wege der Sonne gegliedert, die man den Göttern Anu, Enlil und Ea zuordnete.[12]
Ein zentrales Anliegen der dortigen Priesterastronomen waren astrologische Voraussagen und die Beschäftigung mit himmlischen Vorzeichen. Babylonier und Assyrer bewahrten in ihren Archiven Aufzeichnungen über ihre astronomischen Beobachtungen, die selbst nach vorsichtigen Schätzungen bis ins dritte vorchristliche Jahrtausend zurückreichen.[13][14]
Beispielsweise enthalten die assyrischen MUL.APIN-Tontafeln aus der Epoche von 2300 bis 687 v. Chr. genaue Auflistungen der heliakischen Aufgänge der Sternbilder am Himmel. Sie wurden immer in drei Sätzen erstellt und bis ca. 300 v. Chr. je nach Bedarf dupliziert. Es ist anzunehmen, dass der griechische Astronom Eudoxos von Knidos viele dieser Daten für seine Sternkataloge verwendet hat.
Die Sumerer erstellten nach den astronomischen Konstellationen ihren Kalender. Tausende von überlieferten Tontafeln in Keilschrift enthalten astronomische Texte, die vor allem den Archiven von Uruk und Ninive zugeordnet werden. Schon früh im 3. Jahrtausend v. Chr. wurde die Venus als Stern der Inanna beschrieben. Alte Rollsiegel und Texte zu Inanna als Verkörperung des Planeten Venus belegen das Alter der sumerischen Kenntnisse:[15] Inanna, als Venus sehen dich auch alle Fremdländer leuchten. Ich möchte ihr, als Himmelsherrin, ein Lied darbringen.[16]
Gestützt auf lange Beobachtungsreihen entwickelten babylonische Astronomen mathematische Reihen, die die Berechnung der Positionen der Himmelskörper (siehe Ephemeriden) und damit die Voraussage der Himmelserscheinungen ermöglichten. Bereits um 1000 v. Chr. konnten sie komplexe Überlagerungen periodischer Phänomene in die einzelnen Perioden isolieren und so vorausberechnen.
Nabu-rimanni (ca. 560–480 v. Chr.) war der früheste namentlich bekannte babylonisch-chaldäische Astronom. Bedeutende Nachfolger sind Kidinnu (ca. 400–330), Berossos (um 300) und Soudines (um 240 v. Chr.)
Einfache Formen der Armillarsphäre wurden bereits bei den Babyloniern benutzt und später von den Griechen weiterentwickelt, ebenso wie Sonnenuhren und die Verwendung des Gnomons. Die Einteilung des Tierkreises in 360 Grad, die vermutlich auf die ägyptischen Dekane zurückgeht, wurden ebenso übernommen wie einzelne Beobachtungen und die Planetenbezeichnungen und Perioden der Babylonier. Nicht übernommen aber wurden die zugrunde liegenden mathematischen Methoden; die griechische Herangehensweise war eine andere, da die griechischen Philosophen das Universum primär geometrisch, nicht arithmetisch verstanden.
Das heutige Wissen über die Anfänge der griechisch-ionischen Astronomie und das Ausmaß ihrer Beeinflussung durch die mesopotamische ist sehr lückenhaft. Es ist davon auszugehen, dass der Bücherverlust in der Spätantike auch zahlreiche astronomische Werke betraf.[17] Teilweise kamen sie erst durch arabische Übersetzungen wieder nach Europa.
Hinweise auf die Beschäftigung der antiken Griechen mit den Vorgängen am Himmel bieten bereits sehr frühe literarische Texte. Sowohl Homer als auch Hesiod erwähnen astronomische Gegebenheiten; der Tierkreis ist bei Homer nur teilweise bezeugt. Hesiod hingegen entwickelt sogar eine Weltschöpfungslehre. Die beiden Autoren lassen aber noch kein tieferes Raumverständnis erkennen; so beschreiben sie Morgen- und Abendstern als verschiedene Objekte.[18] Spätestens zur Zeit Platons war dieser Irrtum dank babylonischer Informationen korrigiert; dieser Fortschritt wurde später auf Pythagoras zurückgeführt.[19]
Überliefert ist die Vorhersage einer Sonnenfinsternis im Jahr 585 v. Chr. durch den Philosophen Thales von Milet.
Die Vorsokratiker entwickelten bis zum 5. Jahrhundert v. Chr. unterschiedliche astronomische Modelle. Sie erfanden unter anderem zunehmend genauere Methoden zur Messung der Zeit, etwa Sonnenuhren, deren Grundlagen sie wahrscheinlich von den Babyloniern übernahmen. Anaximander, ein Zeitgenosse und Schüler des Thales, postulierte das geozentrische Weltbild, indem er als erster den Himmel als Kugelschale (Sphäre) mit der Erde im Zentrum beschrieb. Frühere Kulturen sahen den Himmel als Halbkugel nur über der Erdscheibe, ohne außerhalb von Mythen das Problem zu berühren, wo sich die Sterne zwischen Auf- und Untergang befänden. Den Übergang zur Erde als Kugel machte Anaximander jedoch noch nicht.
Die griechische Kultur der klassischen Zeit betrieb erstmals Astronomie aus wissenschaftlichem Interesse an den tatsächlichen Vorgängen am Himmel, unabhängig vom praktischen Nutzen des Kalenders sowie von religiösen und astrologischen Motiven. Noch heute berühmt ist die bemerkenswert genaue Messung des Erdumfangs durch Eratosthenes um 220 v. Chr., der die unterschiedlichen Schattenlängen der Sonne am gleichen Tag in Alexandria und Syene, wo sie genau im Zenit steht, auf unterschiedliche Breitengrade auf einer Kugel zurückführte. Weniger bekannt ist der Versuch des Aristarchos von Samos, den Abstand zur Sonne im Verhältnis zum Mondabstand zu messen, der zwar aufgrund ungenügender Messgenauigkeit sehr fehlerhaft ausfiel (er wurde um den Faktor 20 zu kurz bestimmt), aber methodisch korrekt war.
Hipparchos von Nicäa und andere entwickelten die astronomischen Instrumente, die bis zur Erfindung des Fernrohres fast zweitausend Jahre später in Gebrauch blieben, etwa ein Winkelmessinstrument, eine Art weiterentwickelte Armillarsphäre, mit der Koordinaten an der Himmelskugel bestimmt werden konnten. Es wurde von Eratosthenes noch unter der Bezeichnung Astrolab eingeführt und auch von Ptolemäus beschrieben. Einer der wenigen erhaltenen technischen Gegenstände aus griechischer Zeit ist der Mechanismus von Antikythera, die früheste bekannte Zahnrad-Apparatur (ca. 100 v. Chr.). Der Mechanismus wird als Analogrechner zur Vorausberechnung der Himmelskörperbewegung interpretiert, der womöglich von Poseidonios (135–51 v. Chr.) konstruiert wurde.
Eine weitere wesentliche Vorarbeit für die Astronomie späterer Zeiten leistete Aristoteles (384–322 v. Chr.), der das Prinzip der Camera obscura erkannte. Mit seiner umfassenden Physik, die bis ins Mittelalter nachwirkte, beschrieb er die natürliche Bewegung der Himmelskörper und die Schwerkraft.
Das Werk des Ptolemäus um 150 n. Chr. stellte den Höhepunkt und Abschluss der antiken Astronomie dar. Ptolemäus entwickelte auf der Basis bereits zu seiner Zeit bestehender Arbeiten (Hipparchos und mögliche andere)[21] das nach ihm benannte Weltbild und gab mit dem Almagest ein Standardwerk der Astronomie heraus, auf dessen Sternkatalog sich Astronomen noch bis über die Renaissance hinaus beriefen. Die Römer schätzten die Astronomie als Teil der Bildung, erweiterten sie jedoch nicht. Ihr Interesse galt mehr der Astrologie als eine Möglichkeit, in die Zukunft zu schauen. Ein Teil der antiken Fachliteratur wurde im Oströmischen Reich bewahrt, doch der kulturelle Austausch mit der lateinischsprachigen Gelehrtenwelt West- und Mitteleuropas kam schon am Anfang des Frühmittelalters weitgehend zum Erliegen.
Wiederholt wurden Alternativen zum geozentrischen Weltbild vorgeschlagen. Hiketas von Syrakus (um 400 v. Chr.) ließ die Sterne feststehen und die Erde rotieren. Andere Pythagoreer meinten, im Zentrum des Universums befinde sich ein Zentralfeuer, das von der Erde, der Sonne und den Planeten umkreist werde. Philolaos postulierte zusätzlich eine Gegenerde, damit die Himmelskörper die heilige Zahl 10 erreichten. Aristarchos von Samos schlug im 3. Jahrhundert v. Chr. bereits ein heliozentrisches Weltbild mit der Sonne als ruhendem Zentrum vor. Er argumentierte auch – wie schon im 4. Jahrhundert Herakleides Pontikos – für eine tägliche Achsendrehung der Erde bei unbeweglichem Himmel.
Das geozentrische Weltbild mit einer unbeweglichen Erde, um die sich alle Sphären täglich drehen, blieb jedoch bis Nicolaus Copernicus, der 1543 an Aristarch anknüpfte, das allgemein anerkannte Modell. Der heliozentrische Entwurf von Kopernikus ließ eine Alternative als denkbar erscheinen, die durch Johannes Keplers Erkenntnis der ellipsenförmigen Planetenbahnen plausibler wurde. Doch bezweifelten noch Viele den unermesslich leeren Raum zwischen der Saturnbahn und den nächsten Fixsternen, bis Bessel 1838 erstmals eine Sternentfernung von 10 Lichtjahren bestimmen konnte.
Als Einsichten und Errungenschaften der antiken Astronomen sind festzuhalten:
Plinius der Ältere, der 60 n. Chr. eine Gesamtdarstellung des damaligen naturkundlichen Wissens verfasste, behandelte auch die Astronomie als Himmelskunde im Unterschied zur Astrologie.
In Süd- und Ostasien wurde schon früh das System der heutigen Himmelskoordinaten entwickelt.[23] Während aber in China die astronomischen Beobachtungen eher als Chronik geführt wurden, verknüpfte man sie in Indien schon um 1000 v. Chr. mit einer tiefsinnigen Kosmologie. Demgegenüber weiß man über die astronomischen Hintergründe der amerikanischen Hochkulturen nur relativ wenig.
In der Indus-Kultur entstand ab 1000 v. Chr. eine detaillierte Kosmologie mit den göttlichen Naturkräften Himmel, Erde, Sonne (die als glühender Stein gedeutet wurde), Mond, Feuer und den acht Himmelsrichtungen. Die Welt entstammt einem heiligen Ei aus Silber (Ur-Erde) und Gold (Sternhimmel) mit der Lufthülle als Zwischenschicht. Die Sonne galt als göttliches Auge des Weltalls, der Mondzyklus als Zeit- und Lebensspender. Die Planetenbahnen verlaufen zwischen Sonne und Polarstern.
Die überlieferte vedische Astronomie ist stark in Versen verschlüsselt, was ihre Einordnung in einen größeren Rahmen schwierig macht. Allgemein ist sie aber der babylonischen sehr ähnlich, was – je nach Interpretation und Datierung – babylonische Vorbilder der vedischen Astronomie sowie umgekehrt bedeuten kann. Beide Positionen werden in der Astronomiegeschichte diskutiert, doch ist auch eine im Wesentlichen unabhängige Entwicklung denkbar. Denn einige der Gemeinsamkeiten, wie die Teilung des Tierkreises in 360 Grad mit zwölf Sternbildern, können auch direkt aus der Natur hergeleitet werden. So wird das Jahr zu 360 Tagen gerundet, die Monate aber wie heute gezählt. Allerdings folgen im System der alten indischen Astronomie auf zwei Jahre von 360 Tagen immer eines mit 378 Tagen.[24] Der Tag hat jahreszeitlich verschiedene Längen („Muhurtas“ mit 9,6 bis 14,4 Stunden).
Eine erstaunliche Entsprechung zum Christentum bzw. zu Teilhard de Chardin ist erwähnenswert: Gott ist ein die Welt liebender Geist, dessen Sohn die Entwicklung des Weltalls im Auge behält. Einen zweiten Aufschwung erlebt die indische Astronomie um 500 n. Chr. mit dem Astronomen Aryabhata, dem unter anderem das Konzept der Zahl „Null“ zugeschrieben wird. Bekannt sind auch die fünf Observatorien die Jai Singh II. im frühen 18. Jahrhundert unter anderem in Delhi und Jaipur errichten ließ. Das größte davon, das Jantar Mantar in Jaipur, besteht aus vierzehn Bauwerken zur Beobachtung und Messung astronomischer Phänomene.
Hier ist vor allem die hochentwickelte Navigation mit Sonne und Sternen zu erwähnen, die eine Voraussetzung zur Besiedlung der Inselwelt war.[25] Überliefert sind Orientierungsmethoden
Die Urnacht der Schöpfungsgeschichte hat zwar Sterne, aber noch ohne Sonne und Mond. Die göttliche Trennung von Himmel und Erde erfolgte mit einem Kultstab, ähnlich wie auf orthodoxen Ikonen. Die Wohnstatt Gottes und der Ungeborenen ist in der Milchstraße, und die Seelen sind die Urform der Sternbilder.
Wesentliches Element der chinesischen Philosophie ist die Harmonie von Himmel, Mensch und Erde. Himmelserscheinungen wurden daher unter diesem Gesichtspunkt beurteilt.[5] Das Bestreben der Chinesen war es – so die Deutung in der aktuellen Literatur der Volksrepublik China – Störungen dieser Harmonie vorherzusehen und somit das Zeitalter des Glaubens an unkalkulierbare Fremdbestimmung zu beenden.[26]
Daher hatten sich die Astronomen im Kaiserreich China nicht nur um den Kalender zu kümmern, sondern auch um die Vorhersage außergewöhnlicher Himmelserscheinungen (z. B. Sonnenfinsternis) und auch um staatliche Astrologie. Sie kannten schon um 2000 v. Chr. das Lunisolarjahr mit einer 19-jährigen Schaltregel wegen der Mondknoten (siehe auch Saros-Zyklus). Es gab ein wissenschaftliches Amt, dessen Ursprünge sich nicht mehr ausmachen lassen, sich aber bis deutlich vor Christi Geburt zurückverfolgen lassen. Dieses Amt bestand bis 1911 mit vier Haupt-Bediensteten: Der Chefastronom (Fenxiangshi), verantwortlich für die ununterbrochene Himmelsschau, der Chefastrologe (Baozhangshi), dem die Aufzeichnungen unterstanden, der Chefmeteorologe (Shijinshi) für Wetterphänomene und Sonnenfinsternisse, und der Bewahrer der Zeit (Qiehushi), dem die Kalenderrechnung unterstand.
Diese altchinesischen Chroniken gelten noch heute als zuverlässig und relativ vollständig – auch weil die Beamten für ihre Ergebnisse mit dem Leben bürgten. So ist überliefert, dass die Astronomen Xi und He wegen der versäumten Vorhersage der Sonnenfinsternis vom 3. Oktober 2137 v. Chr. geköpft wurden.[5][27] Ab der Zeitenwende wurden u. a. Sonnenflecken beobachtet, was auch mit bloßem Auge bei Sonnenauf- und Untergang möglich ist, sowie Novae und Supernovae, die Gaststerne genannt werden, oder bereits 613 v. Chr. der Komet Halley.
Dem Weltbild des kaiserlichen China entsprechend gibt es fünf Himmelsareale, die vier Himmelsrichtungen und das Zentrum, das den zirkumpolaren Bereich umfasst und den kaiserlichen Palast repräsentiert. Einflüsse Vorderasiens sind schon in vorchristlicher Zeit seitens des Hellenismus nachweisbar und verstärken sich später. Im Mittelalter werden Instrumente ähnlich der Armillarsphäre benutzt, die wahrscheinlich auf Kontakte zur griechischen und islamischen Welt zurückgehen. Außerdem sind chinesische Sternkarten zur Schiffsnavigation überliefert.
Ab etwa 1600 trugen christliche Missionare die Erkenntnisse und Messmethoden der europäischen Astronomie nach China. Nach anfänglichem Misstrauen wurde ihre Überlegenheit vom Kaiserhaus anerkannt und bereitete der traditionellen Sternkunde ein Ende.[28] So wurde etwa die kaiserliche Sternwarte in der Qing-Dynastie traditionell von Jesuiten wie Ignaz Kögler oder Anton Gogeisl neu eingerichtet und geleitet.
Intensive Forschungen der chinesischen Astronomiegeschichte, deren Ergebnisse er in mehreren Darstellungen veröffentlichte, betrieb der Wissenschaftshistoriker Yabuuchi Kiyoshi.
Über das astronomische Weltbild der indianischen Hochkulturen ist wenig bekannt, doch geben Kultbauten (z. B. Stufentempel mit genauer Orientierung) und Sternwarten zahlreiche Hinweise. Die meisten Schriften und Codices wurden durch die Konquistadoren vernichtet. Zweifelsfrei war aber die Kalenderrechnung und die Berechnung der Planetenzyklen hochentwickelt – siehe den Maya- und den Azteken-Kalender. 1479 schufen die Azteken den „Sonnenstein“.
Die Umlaufzeiten der fünf freisichtigen Planeten waren teilweise auf nur wenige Minuten bekannt. Die Dauer des Monats stimmte mit heutigen Werten auf 6 Dezimalen überein – was pro Jahrhundert nicht einmal 1 Stunde Fehler ausmacht.
Aus dem Mittelalter sind zwei besonders markante Himmelserscheinungen überliefert: 1054 n. Chr. beobachtete man weltweit einen neuen Stern im Sternbild Stier („Supernova 1054“), der wochenlang auch tagsüber sichtbar blieb (Krebsnebel, Messierkatalog M1), und am 25. Juni 1178 beobachtete der Mönch und Chronist Gervasius von Canterbury eine Leuchterscheinung an der Mondsichel, bei der es sich um einen Meteoraufprall (Entstehung des Mondkraters Giordano Bruno?) gehandelt haben könnte.
Durch die Jahrhunderte der Völkerwanderung hatte Mittel- und Westeuropa den Kontakt zum griechisch-römischen Kulturkreis weitgehend verloren. Nur im griechischsprachigen Byzantinischen Reich blieb die antike astronomische Literatur weiterhin zugänglich und wurde studiert. Im lateinischsprachigen Westen hingegen stand bis zum 12. Jahrhundert nur sehr wenig von diesem Wissensgut zur Verfügung. Dort behielt man zwar den Lehrkanon der Sieben Freien Künste bei, in dem die Astronomie einer der vier Teile des Quadriviums war, doch in der Praxis wurde an den Klosterschulen des Frühmittelalters meist nur das Trivium gelehrt, das keinen naturwissenschaftlichen Stoff umfasste.
Im Zuge der Reformpolitik Karls des Großen wurde die Astronomie als Lehrfach aufgewertet: Der Kaiser verpflichtete alle Domkirchen zur Errichtung von Schulen, an denen Astronomie neben den anderen Fächern des Quadriviums (Geometrie, Arithmetik und Musik) gelehrt werden sollte; dabei ging es auch um die für den Klerus wichtige Befähigung zur Berechnung des Osterdatums. Diese Reformen bewirkten jedoch wenig, und die Astronomiekenntnisse blieben in der Praxis dürftig.
In der karolingischen Zeit entstanden allerdings Abschriften der astronomischen Lehrgedichte des Aratos, etwa die prachtvoll illustrierten Leidener Aratea, die vermutlich vom Hofe Ludwigs des Frommen in Auftrag gegeben wurden.[29] Zusammen mit Aratos bildeten die Sternbildbeschreibungen des Hyginus im Poeticon Astronomicon die bis zum Ende des Spätmittelalters weit verbreiteten Standardwerke. Die Kenntnis der klassischen Sternbildmythen stammte im Wesentlichen aus diesen beiden Werken. Die Illustrationen sind künstlerisch hochwertig. Die Positionen, an denen die Illustratoren die Sterne setzten, haben jedoch mit dem tatsächlichen Firmament wenig bis nichts gemein; sie wurden vielmehr so gewählt, dass sie gut zu den Figuren passten.
Die wenigen anderen erhaltenen antiken Werke zur Astronomie wurden in den Klöstern zunächst nur abgeschrieben, mit der beginnenden Scholastik im 11. Jahrhundert auch zunehmend kommentiert. Sie durch eigene Beobachtungen zu bestätigen, zu ergänzen oder zu widerlegen, entsprach jedoch nicht dem mittelalterlichen Verständnis von Wissenschaft. Astronomie wurde daher zu jener Zeit als eine zumindest im Wesentlichen abgeschlossene Wissenschaft verstanden, zu deren Verständnis die eigene Beobachtung des Sternenhimmels nicht erforderlich war. Das plötzliche Auftreten einer Supernova im Jahr 1054 war eines der ersten Ereignisse, die das weithin vorherrschende, statische Verständnis vom Kosmos ins Wanken brachten.
Im Spätmittelalter setzte ein stärkeres Interesse an der Astronomie ein, und mit dem frühen Buchdruck wurden auch astronomische Werke verbreitet. Wesentliche Impulse zur Himmelskunde gab die Wiener astronomische Schule, beginnend mit Johannes von Gmunden (1380–1442). Sein Nachfolger Georg von Peuerbach[30] als weltweit erster Astronomieprofessor (Univ.Wien 1453) wurde durch Neubearbeitungen von Ptolemäus zu einem Vorgänger des Kopernikus. Sein Schüler Regiomontanus gab neben Abschriften der beiden oben erwähnten antiken Werke zahlreiche astronomische Bücher heraus, darunter ein Calendarium, das nach damaligen Maßstäben als Bestseller gelten kann. 1472 gelang ihm die Erstmessung des Winkeldurchmessers eines Kometen. Regiomontanus war empirisch eingestellt und bereit, traditionelle Vorstellungen zu hinterfragen. Eigene Beobachtung und Vergleich mit den Ergebnissen der antiken Wissenschaft sollten nach seiner Ansicht die Astronomie erneuern und helfen, „die Wahrheit“ zu finden. Mit dieser Haltung wurde er neben Nikolaus von Kues zum Wegbereiter des heliozentrischen Weltbildes.
Über Regiomontanus und andere in Wien wirkende Astronomen und Mathematiker verfasste Georg Tannstetter seine Darstellung der Viri Mathematici (1514; deutsch: Mathematische Männer), ein früher Ansatz zur Wissenschaftsgeschichtsschreibung.[31]
Der Mönch Roger Bacon baute nach dem Vorbild von Aristoteles für Sonnenbeobachtungen die ersten Apparate in Form einer Camera obscura und beschrieb 1267 den Aufbau einer Linse korrekt.[32]
Nachdem im Römischen Reich die Astronomie zwar noch gelehrt, aber nicht mehr erweitert wurde, ergab sich ein Fortschritt erst wieder mit der islamischen Expansion. Die führenden Wissenschafter waren häufig auch Hofastronomen oder Hofmathematiker. Die arabischen Leistungen betrafen vor allem die Astrometrie:
Ohne Teleskope waren die islamischen Astronomen jedoch nicht zu bedeutenden Erweiterungen der antiken Erkenntnisse in der Lage. Das geozentrische Weltbild wurde allgemein anerkannt, nur seine Details, wie Epizykeln oder Sphären, wurden zunächst diskutiert, korrigiert und erweitert. Aufgrund der seit der Niederlegung dieser Theorien verflossenen Zeit, in der sich die Fehler akkumuliert hatten, waren die Diskrepanzen der antiken Theorien mit den Beobachtungen für die islamischen Gelehrten offensichtlich. Im 16. Jahrhundert, als sich auch in Europa die kopernikanische Wende vollzog, lehnten islamische Gelehrte die antiken Weltbilder zunehmend ab. Inwieweit diese beiden Wege unabhängig waren, oder ob Kopernikus über Umwege Kenntnis der islamischen Entwicklungen hatte, ist nicht bekannt.
Viele Fortschritte der islamischen Astronomen blieben letztlich ohne Folgen, so wie zum Beispiel das von Ulug Beg zu Beginn des 15. Jahrhunderts erbaute Observatorium von Samarkand. Als das beste seiner Zeit wurde es nach nur einer Generation von Ulug Begs Nachfolgern geschleift und dem Verfall überlassen. Andere islamische Observatorien erlitten ein ähnliches Schicksal, nur das von Nasir Al-din al-Tusi 1264 erbaute Observatorium von Maragha überlebte seinen Erbauer um immerhin fast vierzig Jahre, bevor es zwischen 1304 und 1316 geschlossen wurde. Obwohl die islamischen Astronomen die Fehler der antiken Theorien erkannten und sie verbesserten, bestand ihre aus heutiger Sicht wichtigste Leistung dennoch im Bewahren, Übersetzen und teilweise Erweitern der antiken Naturwissenschaft, wozu die europäische Kultur während des Frühmittelalters kaum in der Lage war. Mit dem Ende der Blütezeit des Islams im 15. Jahrhundert vermochte die islamische Astronomie der europäischen aber kaum noch Impulse zu geben, und ihre Leistungen wurden schließlich durch die europäische Renaissance überholt und gerieten in Vergessenheit.
Der Entwicklungsstand der islamischen Astronomie ist auch exemplarisch für die Astronomie anderer Kulturkreise, die ein ähnliches Niveau erreichten, sich aber (ebenfalls ohne Teleskope) nicht darüber hinaus entwickeln konnten. Besonders erwähnenswert sind die indische oder vedische Astronomie, die chinesische und die präkolumbische Astronomie der indianischen Hochkulturen. Alle diese Kulturen besaßen ein in vielen Jahrhunderten angesammeltes beobachterisches Wissen, mit dem sich die periodischen Phänomene des Planetensystems vorhersagen ließen.[33]
Durch den kulturellen Austausch mit den islamischen Ländern, insbesondere nach der Errichtung der Kreuzfahrerstaaten im Nahen Osten im 12. Jahrhundert und im Verlauf der Reconquista (Übersetzerschule von Toledo), gelangten die Werke des Aristoteles und Ptolemäus über den Zwischenschritt der arabischen Übersetzung wieder in den Westen. Erst byzantinische Emigranten brachten schließlich die antiken Werke nach der Eroberung Konstantinopels durch die Osmanen im Original, beziehungsweise in griechischer Abschrift, nach Mitteleuropa. Auch im Hochmittelalter standen philosophisch-theologische Betrachtungen des Weltgebäudes eher im Brennpunkt als konkret beobachtete Himmelsereignisse. Die unterschiedlichen Modelle der Himmelssphären, wie sie etwa in den wiederentdeckten Werken des Aristoteles und des Ptolemäus beschrieben wurden, wurden ausführlich diskutiert und beispielsweise Fragen nach der Anzahl der Sphären erörtert, oder ob sich die Fixsternsphäre einmal am Tag drehe oder die Erde. An den Prinzipien dieser Kosmologie bestanden jedoch keine Zweifel.
Das Zeitalter der Renaissance markiert die Blüte der klassischen Astronomie als Wissenschaft vom geometrischen Aufbau des Universums, einer Wissenschaft, die sich aber erst in Ansätzen der Erforschung der physikalischen Hintergründe der Sternbewegung widmete. Astrologie und Astronomie waren bis in die Renaissance hinein nicht gegensätzlich, aber auch nicht, wie gelegentlich behauptet, identisch. Viele Astronomen erstellten noch bis in das 17. Jahrhundert auch Horoskope für ihre Auftraggeber, sahen darin aber nicht ihre Haupttätigkeit. Die klassische Astronomie befasst sich nur mit den Positionen der Sterne und Planeten sowie deren exakter Berechnung, die Astrologie versuchte diese Positionen im Hinblick auf die irdischen Ereignisse zu deuten. Astronomische Kenntnis war also die Voraussetzung für Astrologie.
Die europäische Astronomie erhielt durch die Arbeiten von Nicolaus Copernicus eine neue Orientierung. Nach Beobachtungen des Mondes gegen den Hintergrund der Fixsterne zweifelte er am geozentrischen Weltbild und arbeitete ein Modell aus, in dem die Sonne im Mittelpunkt des Kosmos steht. 1543 stellte er es in seinem Buch De revolutionibus orbium coelestium vor.
Von 1519 bis 1522 gelang der von Fernão de Magalhães (Magellan) geleiteten Expedition die Erstumsegelung der Erde, dabei auch die Entdeckung der Magellanstraße, der Philippinen und die Wiederentdeckung der Magellanschen Wolken am Südhimmel (sowie der Datumsgrenze). Eine neue Epoche der Astronomie leitete Nicolaus Copernicus ein. Er legte im Mai 1543 in seinem Buch De revolutionibus orbium coelestium mathematisch dar, dass die Planetenbewegungen auch mit einem heliozentrischen Weltbild korrekt beschrieben werden können. 1568 verbesserte Daniele Barbaro die Camera obscura durch Benutzung einer Linse und leistete damit wesentliche Vorarbeit für die Astronomen späterer Generationen.[32] Tycho Brahe vermaß erstmals die Bahnen von Kometen und zog daraus Schlussfolgerungen bezüglich ihrer Entfernung (1577) – die großen „astronomischen“ Distanzen wurden greifbar. Zuvor beobachtete Tycho eine Supernova (1572) sowie die Marsbahn, und nachdem 1603 Johann Bayer den ersten neuzeitlichen Sternkatalog (Uranometria) veröffentlicht hatte, beschrieb 1609 Johannes Kepler in seinem Buch Astronomia Nova das nach ihm benannte 1. und 2. keplersche Gesetz der Planetenbewegungen um die Sonne (seine zuvor erschienenen Werke waren Wegbereiter seiner Astronomia Nova). Nun lag eine korrekte Beschreibung der Planetenbewegungen aus heliozentrischer Sicht vor. Die nötige Vorarbeit hatte Tycho Brahe mit dem von ihm entwickelten Mauerquadranten geleistet. Dieses Instrument löste die seit der Antike gebräuchliche Armillarsphäre als Universalinstrument ab. Die Genauigkeit von Brahes Positionsmessungen der Planeten ermöglichten Johannes Kepler erst die Entdeckung der Gesetze der Planetenbewegung.
Die Erfindung des Fernrohrs zu Beginn des 17. Jahrhunderts besiegelte die Zeitenwende der Astronomie. Galileo Galilei entdeckte mit dessen Hilfe die vier inneren Monde des Jupiter und die Phasen der Venus. Diese Entdeckungen wurden zum Teil 1610 in Sidereus Nuncius veröffentlicht. Dadurch wurde das ptolemäische Weltbild nachhaltig geschwächt. Es wurde deutlich, dass das kopernikanische Weltbild ebenso wie das geozentrische Modell von Brahe mit den Beobachtungen verträglich war. Ein entscheidender Beweis war zu dieser Zeit weder theoretisch noch praktisch möglich. Der darauf folgende Streit mit der Kirche endete zwar mit dem juristischen Sieg der Inquisition gegen Galilei, begründete aber ein problematisches Verhältnis zwischen Kirche und Naturwissenschaften.
Die europäischen Fürsten förderten die Astronomie zunehmend an ihren Höfen als Zeichen ihrer Kultur und Bildung, wodurch sich ein personeller wie finanzieller Aufschwung der Forschung ergab. Daneben wurden Nationalobservatorien gegründet, wie zum Beispiel das Royal Greenwich Observatory oder die Pariser Sternwarte. Deren Aufgabe war es vor allem, Tabellen für die Seefahrt zu liefern und das Längenproblem zu lösen, daneben betrieben sie aber auch astronomische Forschung. Während die Forschung der Hofastronomen an das persönliche Interesse der Fürsten gebunden war, konnten sich an den Nationalobservatorien längerfristige Forschungstraditionen entwickeln, so dass solche unabhängigen Sternwarten spätestens mit dem Beginn des 19. Jahrhunderts eine Führungsrolle in der Forschung einnahmen.
Zu Beginn des 17. Jahrhunderts begannen Astronomen damit, Himmelskörper mit Hilfe neu entdeckter optischer Instrumente zu beobachten. Das erste funktionsfähige Fernrohr wurde um 1608 in den Niederlanden gebaut. Wer der tatsächliche Erfinder war, ist umstritten.[32]
1609 veröffentlichte Johannes Kepler sein Werk Astronomia Nova mit den ersten beiden keplerschen Gesetzen. Der Astronom Simon Marius entdeckte 1612 unsere Nachbargalaxie, den Andromedanebel, durch das Teleskop wieder (sie war erstmals vom persischen Astronomen Al-Sufi im 10. Jahrhundert entdeckt worden[34]). Schon 1610 veröffentlichte Galileo Galilei sein Buch Sidereus Nuncius, in dem er von seinen Neuentdeckungen per Fernrohr berichtete. 1632 erschien sein „Dialog über die zwei Weltsysteme“, jedoch musste er am 22. Juni 1633 dem heliozentrischen Weltbild abschwören. Er starb am 8. Januar 1642. Johann Baptist Cysat entdeckte 1619 neue, physikalisch zusammengehörige Doppelsternsysteme. Das führte zu Spekulationen über Planetensysteme um andere Sterne, eine Möglichkeit, die zuvor nur philosophisch, ausgehend von Giordano Bruno, diskutiert worden war.
1651 veröffentlichte Giovanni Riccioli die erste Mondkarte; 1655/56 gelang Christiaan Huygens und Giovanni Domenico Cassini die Entdeckung der Saturnringe, des Mondes Titan und des Orionnebels (Huygens, veröffentlicht 1659 in Systema Saturnium). Huygens erkannte als erster die wahre Natur der Ringe des Saturn.
1668 kam Isaac Newton auf die Idee, das Licht mit Spiegeln statt mit Linsen aus Glas zu bündeln – die Erfindung des Spiegelteleskops. Auch gelang ihm 1669 die Entdeckung der Massenanziehung (Gravitation) und die erste Theorie zur Erklärung des Phänomens „Licht“ als Teilchenstrahlung, so dass das Verständnis des Kosmos langsam auf eine neue Basis gestellt wurde. Er legte mit dem 1687 erschienenen epochalen Werk Philosophiae Naturalis Principia Mathematica die ersten Grundlagen der Astrophysik, indem er die keplerschen Gesetze auf seine Theorie der Gravitation zurückführte.
In dieser Zeit entdeckte Cassini 1671 die Saturnmonde Japetus, 1672 Rhea, 1684 Tethys und Dione. Von 1683 bis 1686 fanden und erklärten Cassini und Nicolas Fatio de Duillier das Zodiakallicht.
1676 bewies Ole Rømer über Verzögerung der Jupitermondverfinsterungen in Abhängigkeit von deren Erdabstand, dass die Lichtgeschwindigkeit endlich ist. Nach seiner entscheidenden Vorarbeit wurde sie erstmals 1678 von Christiaan Huygens mit etwa 213.000 km/s berechnet (der heutige Wert lautet c = 299.792,458 km/s), indem er die Laufzeitangabe (22 min = 1320 s) von Römer und den Erdbahndurchmesser (280 Millionen km in heutigen Einheiten, der wahre Wert ist 299 Mio. km) von Cassini verwendete (erschienen in Abhandlung über das Licht, 1690).
Die Astronomie des 18. Jahrhunderts ist vor allem von zwei großen Linien geprägt:
Daraus folgten wichtige Entdeckungen wie
Newton folgerte in seinen Principia, dass Kometen sich ähnlich den Planeten, aber in langgestreckten Ellipsen um die Sonne bewegen („Diximus Cometas esse genus Planetarum in Orbibus valde excentricis circa Solem revolventium“). Durch Vergleichen der überlieferten Kometensichtungen müssten sich wiederkehrende Objekte zeigen. Edmond Halley übernahm diese Aufgabe und veröffentlichte 1705 seine Berechnungen. Er postulierte, dass der Komet von 1682 mit früheren Erscheinungen in den Jahren 1607 und 1531 identisch sein müsse, und leitete daraus seine Wiederkehr für 1758/59 ab. Das Eintreffen dieser Prognose war ein großer Triumph der newtonschen Theorie, aber auch einzigartig. Viele Kometen wurden in dieser Zeit vorhergesagt, sogar zwei weitere von Halley. Erst 1822 wurde ein kleiner (nur durch ein Fernrohr sichtbarer) Komet auch als periodisch bestätigt (2P/Encke). Dass ein Bauer aus Sachsen (Palitzsch) und nicht die Berufsastronomen in Paris oder London den 1P/Halley entdeckte, war ein Ergebnis der Popularisierung der modernen Wissenschaften und sorgte zusätzlich für eine Sensation.
Mit zunehmend leistungsfähigeren Fernrohren wurde die Erforschung der nebeligen Himmelsobjekte ein wichtiges Arbeitsgebiet. Die helleren Sternhaufen wurden bereits als solche erkannt. Bei schwachen Nebel- und Gaswolken wurde die Methode des indirekten Sehens angewandt.
Charles Messier erstellte 1774 das erste systematische Verzeichnis der „Nebelobjekte“, den noch heute verwendeten Messier-Katalog. Hauptzweck war allerdings die Unterscheidung von neu entdeckten Kometen.
1718 stellte Halley durch Vergleich mit antiken Sternkarten die These der Eigenbewegung der Fixsterne auf.
1728 entdeckte James Bradley bei dem vergeblichen Versuch, eine Parallaxe der „Fixsterne“ zu messen, dass die Position jedes Sterns im Laufe des Jahres schwankt (Aberration). Dies wurde auch von den meisten der damals noch zahlreichen Anhänger des Tychonischen Weltbildes als Beweis für die Bewegung der Erde anerkannt. Außerdem konnte damit die Lichtbewegung bestätigt und die Lichtgeschwindigkeit genauer berechnet werden.[35]
1755 entwarf Immanuel Kant erste Theorien über eine rein aus mechanischen Vorgängen resultierende Entstehung unseres Sonnensystems.
1761 wird von mehreren Beobachtern des Venustransits am 6. Juni die erste außerirdische Atmosphäre erkannt.
1769 beteiligte sich James Cook auf Tahiti als einer von mehreren auf der Erde verteilten Beobachtern des Venustransits am 3. Juni an der für weit über ein Jahrhundert genauesten Entfernungsbestimmung Erde – Sonne.
Der Planet Uranus war, obwohl er mit freiem Auge unter günstigen Verhältnissen sichtbar ist, von den antiken Astronomen nicht als Planet erkannt worden. Nach Erfindung des Fernrohrs wurde er erstmals von John Flamsteed am 23. Dezember 1690 gesichtet und als Fixstern „34 Tauri“ katalogisiert.[37] Am 13. März 1781 beobachtete ihn Wilhelm Herschel als kleines Scheibchen und hielt ihn zunächst für einen Kometen. Hingegen vermutete Nevil Maskelyne, dass es ein weiterer Planet sein könnte. 1787 entdeckte Herschel die Uranusmonde Titania und Oberon und 1783 auch die Eigenbewegung der Sonne in Richtung auf die Sternbilder Herkules und Leier. Damit wurde unsere Sonne endgültig zu einem der vielen Sterne, die sich im System der Milchstraße bewegen.
In dieser Epoche entwickelte sich das Wissen um die physikalischen Grundlagen der astronomischen Beobachtungsmethoden und des Lichts – und in der Folge die Astrophysik. Manche sprechen auch von Jahrhundert des Refraktors, das durch Fraunhofers völlig farbreine Objektive die Entwicklung großer Linsenteleskope ermöglichte. Sie erweiterten die Kenntnis des Planetensystems, der Milchstraße und durch präzise Messung geografischer Längen auch die Erdmessung. Joseph von Littrows „Wunder des Himmels“ wurde zum Musterbuch populärer Wissenschaft, erlebte zahlreiche Auflagen und machte der Allgemeinheit die Investitionen in neue Sternwarten plausibel.
1800 entdeckte Wilhelm Herschel die Infrarotstrahlung der Sonne, 1802 William Wollaston die Absorptionslinien im Sonnenspektrum. Unabhängig davon beschrieb Josef Fraunhofer 1813 die nach ihm benannten fraunhoferschen Linien im Sonnenspektrum und erfand ein Jahr später das Spektroskop. Durch die Forschungen von Gustav Robert Kirchhoff und Robert Wilhelm Bunsen wurde es im Jahre 1859 möglich, die Absorptionslinien im Sonnenspektrum durch energetische Vorgänge in Gasatomen und -Molekülen zu erklären. Damit wurde eine der wichtigsten Grundlagen für die moderne Astronomie gelegt, aus der sich die Astrophysik entwickelte.
Die Himmelsobjekte wurden mit Hilfe der Spektroskopie in Klassen eingeteilt, die später auf physikalische Gemeinsamkeiten zurückgeführt werden konnten. 1890 begann eine Gruppe von Astronominnen, unter ihnen Williamina Fleming, Antonia Maury und Annie Jump Cannon, die Klassifikation der Sterne nach deren Spektrum zu erarbeiten. Diese Spektralklassen sind bis heute eine wichtige Forschungsmethode.
Ein weiterer großer Schritt war die Ergänzung des menschlichen Auges als Beobachtungsinstrument durch die Fotografie. Die erste lichtbeständige Fotografie wurde 1826 von Joseph Nicéphore Nièpce angefertigt. 1840 gelang John William Draper die erste Aufnahme des Mondes[38] mittels Daguerreotypie. Durch immer empfindlichere Fotoemulsionen wurden nun einerseits die Beobachtungen objektiver und besser dokumentierbar. Andrerseits eröffneten stundenlange Belichtungen die Möglichkeit, lichtschwächere Objekte wesentlich detailreicher als visuell zu erforschen. Einer der ersten Astronomen, der die Astrofotografie einsetzte, war der Jesuit Angelo Secchi, Direktor des Vatikanischen Observatoriums; er gilt auch als der Wegbereiter der Spektralanalyse.
Durch mehrstündige Belichtung konnte man ab etwa 1890 visuell kaum sichtbare Nebel wie den Nordamerikanebel oder Barnards Loop fotografieren; Edward Barnard entdeckte dabei zahlreiche Dunkelnebel der Milchstraße. In Heidelberg gelang die fotografische Entdeckung vieler Kleinplaneten anhand ihrer kurzen Bahnspuren.
Friedrich Wilhelm Bessel gelang 1838 mit dem Fraunhofer’schen Heliometer erstmals der Nachweis einer Fixsternparallaxe: 2 Jahre Messungen an 61 Cygni zeigten eine periodische Verschiebung von 0,30" ± 0,02", woraus die Entfernung dieses Sterns zu 10 Lichtjahren folgte. Damit hatte sich das Universum gegenüber den Vorstellungen des 18. Jahrhunderts um mehr als das 10-fache „vergrößert“.
1846 erweiterte sich auch das Sonnensystem – durch die Entdeckung Neptuns (siehe unten). Und die Riesenteleskope von Herschel und Lord Rosse zeigten die genauen Struktur von Nebelflecken, Sternhaufen und erstmals die Spiralarme naher Galaxien. Ab 1880 ermöglichte die Lichtstärke neuer Riesenteleskope die spektroskopische Analyse der Gasplaneten und ihrer Atmosphären. Durch die Positionsastronomie weit entfernter Sterne gelang Newcomb die Etablierung eines exakten Inertialsystems der Himmelskoordinaten.
Alvan Graham Clark entdeckte 1862 den von Bessel 1844 vorhergesagten Sirius-Begleiter (Sirius B). Dieser extrem dichte Zwergstern wurde der erste des Typus Weißer Zwerg. 1877 fand Asaph Hall die zwei Monde des Mars und Schiaparelli die sogenannten „Marskanäle“ – in der Folge erhielten Spekulationen über „Marsmenschen“ gewaltigen Auftrieb. 1898 meldete Gustav Witt die Entdeckung des erdnahen Asteroiden Eros, der bald für genaue Distanzmessungen diente.
Angeregt durch den Erfolg Herschels bei der Entdeckung des Uranus, fahndeten die Astronomen nach weiteren Planeten und wurden mit den Objekten des Asteroidengürtels fündig. Da Uranus bereits ein Jahrhundert zuvor als Stern katalogisiert worden war, ohne ihn als Planeten zu erkennen, standen bald ausreichend Daten zur Verfügung, um Störungen in der Uranusbahn zu erkennen. Aufgrund dieser Störungen wurde ein weiterer Planet mathematisch vorausgesagt, der in Neptun 1846 schließlich von Johann Gottfried Galle[39] gefunden werden sollte. Schon Galilei hatte Neptun am 27. Dezember 1612 gesehen, ihn aber nicht als Planeten erkannt.[36]
1900 veröffentlichte Max Planck das plancksche Strahlungsgesetz; ein Hinweis auf die Entropie des Universums und Wegbereiter der Quantentheorie. 1901 beobachtete Charles Dillon Perrine zusammen mit George Willis Ritchey Gasnebel um den Stern Nova Persei, die sich scheinbar mit Überlichtgeschwindigkeit bewegten, wenige Jahre später entdeckte er zwei Jupitermonde. 1906 entdeckte Max Wolf den ersten Trojaner (Achilles) und etwa im selben Zeitraum Johannes Franz Hartmann erste Hinweise auf die Existenz interstellarer Materie.
1913 entwickelte Henry Norris Russell aufbauend auf den Arbeiten von Ejnar Hertzsprung das sogenannte Hertzsprung-Russell-Diagramm. Dabei handelt es sich um ein auf spektralanalytischer Einteilung basierendes Verfahren, aus dem Hinweise auf den Entwicklungszustand von Sternen abgeleitet werden können.
Am 30. Juni 1908 erfolgte der gigantische Einschlag des Tunguska-Meteoriten (40 km2 verwüstet) und 1920 in Südwestafrika (heute Namibia) die Auffindung des schwersten Eisenmeteoriten aller Zeiten (Meteorit Hoba, ca. 60 Tonnen, 2,7 m × 2,7 m × 0,9 m). 1923 gelang u. a. Edwin Hubble der Nachweis, dass der Andromedanebel (M 31) weit außerhalb der Milchstraße liegt, es also auch andere Galaxien gibt. 1927 fand Georges Lemaître mit Hilfe der von Milton Lasell Humason nachgewiesenen Rotverschiebung die Expansion des Weltalls. 1929 legte Hubble überzeugend einen linearen Zusammenhang zwischen Rotverschiebung und Entfernung von Galaxien dar. Obwohl seine Berechnungen zwischenzeitlich mehrfach verbessert wurden, trägt die so errechnete fundamentale Größe der Kosmologie seinen Namen (Hubble-Konstante). Die sich aus dieser Größe ergebende Hubble-Zeit bezeichnet den Zeitpunkt, zu dem rechnerisch die Expansion des Weltalls begonnen hat (Urknall). Hubble selbst berechnete etwa 2 Milliarden Jahre; heutzutage wird ein Wert von knapp 14 Milliarden Jahren postuliert.
Neptun, der für Bahnabweichungen des Uranus verantwortlich gemacht worden war, war zwar 1846 gefunden worden, doch in den Bahnen der beiden Planeten gab es immer noch unerklärliche Abweichungen. Also suchte man weiter nach einem hypothetischen neunten Planeten, „Transneptun“.[40]
Bei dieser Suche hatte Percival Lowell 1915 Pluto fotografiert, ihn aber zu diesem Zeitpunkt nicht als Planeten erkannt. Erst am 18. Februar 1930 entdeckte ihn Clyde Tombaugh[41] im von Lowell gegründeten Lowell-Observatorium durch Vergleiche einiger Himmelsaufnahmen am Blinkkomparator auf fotografischen Platten. Bis 2006 wurde Pluto als neunter Planet gezählt. Seitdem gehört er zur neugeschaffenen Klasse der Zwergplaneten.
Im Laufe seiner Arbeit am Observatorium auf dem Pic du Midi de Bigorre fand Bernard Lyot, dass die Oberfläche des Mondes Eigenschaften von vulkanischem Staub aufweist und auf dem Mars Sandstürme auftreten. 1931 fand Karl Guthe Jansky die Radioquelle „Sagittarius A“. In den Folgejahren entwickelten dann 1933 auch Walter Baade und Fritz Zwicky ihre Theorien über den Übergang von Supernovae in Neutronensterne: Die Materiedichte dort musste der Dichte der Atomkerne entsprechen. Die Antwort auf die Frage, was in Sternen vorgeht, bevor diese zu solchen Neutronensternen kollabieren, gelang 1938 Hans Bethe und Carl Friedrich von Weizsäcker, die die Wasserstoff-Fusion zu Helium im C-N-Cyclus entdeckten (stellarer Fusionsprozess, Bethe-Weizsäcker-Zyklus; im gleichen Jahr fand Nicholson den 10. und 11. Jupitermond, Lysithea und Carme). Somit konnte man davon ausgehen, dass Sterne durch Wasserstoff-Fusion aufleuchten und brennen, bis ihr Wasserstoffvorrat thermonuklear ausgebrannt ist. Danach kommt es zum „Helium-Flash“, in dessen Folge Helium zu schwereren Elementen fusioniert wird. 1965 fanden Kippenhahn, Thomas, Weigert und andere Astronomen und Kernphysiker heraus, dass die Fusion von Wasserstoff und Helium im Riesenstern auch nebeneinander ablaufen kann (ab ca. drei Sonnenmassen). Das Endstadium dieser Prozesse ist dann ein Schwarzes Loch.
Ein erster Radarkontakt zu einem Himmelskörper gelang schon 1946, am 10. Januar (erstes Radarecho vom Mond, Weglänge 2,4 Sekunden). 1951 folgte die Entdeckung der kosmischen 21-cm-Radiostrahlung (vom interstellaren Wasserstoff), später die Entdeckung der 2,6-mm-Strahlung (vom Kohlenmonoxid). 1956 wurde erstmals Radiostrahlung aus elektrischen Entladungen in der Venusatmosphäre empfangen. 1964 wurde die 3K-Hintergrundstrahlung entdeckt („Echo des Urknalls“). Die Radioastronomie war erfunden.
Am 12. Mai 1971 ging in Effelsberg, Eifel, das erste deutsche Radioteleskop in Betrieb. Doch auch in der optischen Astronomie wurde weitergeforscht: 1973 nahm James Van Allen eine systematische Himmelsdurchmusterung vor, pro Quadratgrad wurden bis hinab zur Helligkeit von nur 20m) 31.600 Sterne und 500 Galaxien registriert, also 1,3 Milliarden Sterne und 20 Millionen Galaxien (mit je ca. 200 Milliarden Sternen). Derweil entwarf 1974 Stephen Hawking seine Theorie der Emission virtueller Teilchen aus Schwarzen Löchern. Am 29. März 1974 erreichte Mariner 10 als erste Sonde den innersten Planeten Merkur, unterstützt durch die Swing-by-Technik am Planeten Venus am 5. Februar 1974. Weitere Merkurpassagen fanden am 21. September 1974 und am 16. März 1975 statt. Am 10. März 1977 wurden die Ringe des Uranus erstmals beschrieben.[42]
Viele Aktivitäten in der Astronomie und Raumfahrt galten ab Mitte der 1970er Jahre der Frage, ob es weitere bewohnbare oder gar bewohnte Welten gebe. Ein erster aktiver Versuch zur Kontaktaufnahme mit außerirdischen Zivilisationen wurde am 16. November 1974 unternommen (Aussendung eines 1,679-kB-Radiosignals zum Kugelsternhaufen M13; Signalankunft dort: etwa im Jahre 27.000 n. Chr.). 1976 gelang Joachim Trümper die Entdeckung eines stellaren Supermagnetfeldes über 58-keV-Strahlung der gyrierenden Elektronen bei HZ Herculis: 500 · 106 Tesla (Erdmagnetfeld an der Oberfläche: ca. 50 · 10−6 Tesla). 1977 fand Charles Kowal den ersten Zentauren Chiron (ferner Planetoid, Durchmesser 200 bis 600 km, Bahnradius 8,5 bis 18,9 AE).
Am 3. März 1972 startete die NASA die Sonde Pioneer 10. Sie war zum 3. Dezember 1973 die erste Raumsonde, die am Planeten Jupiter vorbeiflog. Die Schwestersonde Pioneer 11 hob am 6. April 1973 ab, passierte am 3. Dezember 1974 den Jupiter und flog am 1. September 1979 als erste Sonde am Saturn vorbei.
Am 5. September 1977 startete die NASA Voyager 1, der eine Jupiterpassage nach 675 Mio. km Reise am 5. März 1979 gelang, ihre Saturnpassage folgte im November 1980. Am 20. August 1978 startete mit Voyager 2 die erfolgreichste Swing-by-Raumsonde aller Zeiten in das äußere Sonnensystem (Missionsdaten: Jupiterpassage 9. Juli 1979, Saturnpassage, Uranusvorbeiflug Januar 1986, Neptunpassage 1989), und noch als sie auf die Reise ging, meldete James W. Christy die Entdeckung des Plutomondes Charon. 1977/78 entdeckte man in den Fernen des Weltalls auch erstmals organische Moleküle in der interstellaren Materie: z. B. Essigsäure, Methylcyan, Aminomethan, Ethanol usw., ein radioastronomischer Hinweis auf eine mögliche chemische Evolution. Die unbemannte Raumfahrt stieß an die Grenzen unseres Sonnensystems: 1979/1980 Entdeckung zahlreicher Jupiter- und Saturnmonde mit Pioneer 11 und Voyager 2. 1983 passiert Pioneer 10 als erste Raumsonde die Plutobahn – elf Jahre nach ihrem Start.[43] 1984 Erstfotografie und Erstdurchflug des Saturnringes.
Die Sonde ISEE-3 flog (1985, 11. September) erstmals durch einen Kometenschweif (mit Gasanalyse: Sonde ISEE-3 bei Giacobini-Zinner). In der Stellar-Astronomie galt die Supernova von 1987 als die Sensation der 1980er Jahre (24. Februar: Erstregistrierung und -fotografie eines Supernova-Ausbruchs in der Großen Magellanschen Wolke (LMC), deren Neutrinos die Erde noch vor den ersten optisch wahrnehmbaren Signalen erreichten).[44] Die Instrumente, die den Astronomen zur Verfügung standen, wurden immer besser, genauer, auch komplizierter – aber mit Beginn der 1990er Jahre war es erstmals möglich, optische Beobachtungen von außerhalb der störenden Atmosphäre vorzunehmen: Am 24. April 1990, meldete die NASA den Start des Weltraumteleskops Hubble mit dem Space-Shuttle Discovery. Das neue Beobachtungsgerät ermöglichte – frei von Störungen durch die Erdatmosphäre – in den Folgejahren Himmelsaufnahmen von neuer, großartiger Auflösung. Am 6. August 1993 kam es so zur Entdeckung von Stickstoffeis auf Pluto (statt des zuvor vermuteten Methaneises). Am 27. Dezember 1999 wurde eine Reparatur des Weltraumteleskopes Hubble erforderlich – es half so u. a. weiterhin bei der Entdeckung und Erstfotografie von Braunen Zwergen und gigantischen „Superplaneten“ außerhalb unseres Sonnensystems.
Auch Sonden erforschten das Sonnensystem weiter: Galileo erreichte am 29. Oktober 1991 den Planetoiden Gaspra und war am 28. August 1993 bei Ida, Ulysses flog am 13. September 1994 über den Sonnensüdpol und die Galileo-Landekapsel am 7. Dezember 1995 sogar in die Jupiteratmosphäre: Erstmals konnte die Gashülle eines Gasplaneten spektroskopisch untersucht werden. Alan Hale und Thomas Bopp veröffentlichten die Entdeckung des Kometen am 22. Juli 1995 Hale-Bopp nahe der Jupiterbahn. Der Komet erreichte im März 1997 eine scheinbare Helligkeit von −1m. Hinweise auf außerirdisches Leben sollen 1996 in dem vom Mars stammenden Antarktis-Meteoriten ALH 84001 (Alter 3,6 Mrd. Jahre) entdeckt worden sein (umstritten).
Mit der Entdeckung eines ersten nichtstellaren Himmelskörpers außerhalb unseres Planetensystems machte die Astronomie eine sprunghafte Entwicklung in Sachen Exoplaneten-Suche durch: Am 12. Dezember 1984 meldeten Mc Carthy u. a. die Erstentdeckung eines nichtstellaren Himmelskörpers außerhalb des Sonnensystems, IR-astronomisch: Er entpuppte sich als ein „Brauner Zwerg“ bei Stern Van Briesbroeck 8 (Entfernung 21 Lichtjahre, 30 bis 80 Jupitermassen). Mitte der 1990er Jahre wurden erstmals Exoplaneten, d. h. Planeten außerhalb des Sonnensystems, gefunden, zuerst um einen Pulsar, 1995 dann um einen Hauptreihenstern. Seither nahm die Zahl der bekannten Exoplaneten ständig zu.
Voyager 1, die Raumsonde, die 1977 gestartet worden war, ist das am weitesten von der Erde entfernte von Menschen gemachte Objekt. Die Entfernung wird auf etwa 16 Lichtstunden geschätzt, an der mutmaßlichen Grenze der Heliosphäre. Die Sonde sendet noch immer Signale und wird dies voraussichtlich bis 2020 tun.
Vor über hundert Jahren begann man mit der Suche nach transneptunischen Objekten im Kuipergürtel, der äußeren Region unseres Sonnensystems. Ihre Liste, die Liste von transneptunischen Objekten ist mittlerweile lang geworden.
Dem Verstehen der physikalischen Welt durch die Astronomie gelten der Vorschlag Arthur Eddingtons von 1920, die Kernfusion als Energiequelle der Sterne in Betracht zu ziehen, und das Erkennen der Spiralnebel als extragalaktische Objekte durch Edwin Hubble 1923 sowie dessen Idee eines sich ausdehnenden Universums von 1929, die er nach einem Vergleich zwischen Entfernung und Fluchtgeschwindigkeit der Galaxien entwickelte, als Meilensteine. Das Modell des aus einem Urknall heraus expandierenden Universums ist heute allgemein anerkannt.
Albert Einstein lieferte mit seiner speziellen und allgemeinen Relativitätstheorie die Grundlage für viele Theorien der modernen Astrophysik. So basiert beispielsweise die oben genannte Kernfusion auf der Äquivalenz von Masse und Energie, bestimmte extreme Objekte wie Neutronensterne und Schwarze Löcher bedürfen der allgemeinen Relativitätstheorie zur Beschreibung und auch die Kosmologie basiert in weiten Teilen auf dieser Theorie.
Mit dem Beginn der Raumfahrt in der zweiten Hälfte des 20. Jahrhunderts bekam die Astronomie Gelegenheit, einige ihrer im Sonnensystem gelegenen Forschungsgegenstände direkt aufzusuchen und wissenschaftliche Analysen vor Ort vorzunehmen. Doch mindestens ebenso wichtig war auch der Wegfall der Beschränkungen der Erdatmosphäre, mit dem sich durch satellitengestützten Observatorien der Ultraviolettastronomie, der Röntgenastronomie und der Infrarotastronomie neue Wellenlängenbereiche und damit neue Fenster ins Universum öffneten, von denen jedes zuvor ungeahnte Erkenntnisse erbrachte. Mit der Erforschung von Neutrinos der Sonne und der Supernova 1987A, der Beobachtung von Teilchenschauern der kosmischen Strahlung und dem Bau von Gravitationswellendetektoren begann die moderne Astronomie außerdem erstmals, andere Strahlungsarten als die elektromagnetische Strahlung zu untersuchen. Gleichzeitig boten sich der visuellen Astronomie mit Teleskopen wie dem Hubble-Weltraumteleskop oder dem Very Large Telescope neue Beobachtungsmöglichkeiten.
Im 21. Jahrhundert wurde an den Bausteinen der Materie des Kosmos ebenso wie an seinen Objekten in den Fernen des Weltraums weiter geforscht. So wurden z. B. viele weitere extrasolare Planeten (Exoplaneten, Planemos) entdeckt.[45] Im Mai 2006 waren schon über 130 Planetensysteme bekannt. Auf den bis dahin entdeckten Planeten ist ein Leben ähnlich dem auf der Erde, also mit wässriger Biochemie, ausgeschlossen, allerdings liegt die Entdeckung erdähnlicher Planeten noch außerhalb der technischen Möglichkeiten. Mit Methoden wie der Interferometrie hoffen Astronomen jedoch, schon bald nach erdgroßen Planeten um benachbarte Sterne suchen und spätestens in der nächsten Generation deren Atmosphären spektroskopieren zu können.
Am 11. Juni 2007 meldete die NASA einen neuen „Rekord“. Sie konnte nachweisen, dass 55 Cancri (Fixstern im Sternbild Krebs, etwa 41 Lichtjahre entfernt) von fünf Planeten umkreist wird. Einer der neu gefundenen Planeten hat 45 Erdmassen und umkreist 55 Cancri in der bewohnbaren Zone, also in der Zone, in der Wasser flüssig sein kann.[46]
Bibliografie