Der Hitzeschild ist in der Raumfahrt die Schicht eines Raumflugkörpers, welche diesen vor der entstehenden Hitze beim Eintritt in eine Atmosphäre[1] schützen soll. Die Grundlagenentwicklung fand zu Beginn des Kalten Krieges statt – die nuklearen Sprengsätze sollten den Wiedereintritt überstehen. Sehr stark beschleunigende Raketen, wie die US-amerikanische Raketen-Abwehrrakete Sprint und Hyperschallflugkörper benötigen ebenfalls einen Hitzeschild.
Beim Wiedereintritt wird der Raumflugkörper durch die umgebende Atmosphäre stark abgebremst. Dabei heizt sich die Luft in der Schockfront vor dem Fahrzeug durch Kompression sehr stark auf und damit auch das Raumfahrzeug. Ohne Hitzeschild würde das Raumfahrzeug dadurch ganz oder teilweise verglühen. In der Regel sind die Landekapseln bemannter Raumschiffe, Raumfähren und Raumsonden, die auf einem Planeten oder Mond mit dichter Atmosphäre landen, zum Schutz mit einem Hitzeschild ausgestattet.
An das Material des Hitzeschildes werden enorme Anforderungen gestellt, da er Temperaturen bis zu mehreren tausend Grad Celsius aushalten muss. Der Hitzeschild soll einerseits die aus der Schockfront aufgenommene Wärme möglichst effektiv an die Umgebung abgeben und andererseits durch geringe Wärmeleitfähigkeit das Raumschiff und seine Nutzlast, z. B. Raumfahrer und Geräte, vor der Hitze schützen.
Wiederverwendbare Hitzeschilde wie die Hitzeschutzkacheln der Space Shuttles bestehen meist aus durch Sintern gebundenen, hochporösen Glasfaserwerkstoffen mit einer dichten, spröden, temperaturbeständigen dünnen Deckschicht (Borsilikat).
Besonders beanspruchte Teile des Space-Shuttle-Hitzeschilds, wie die Flügelvorderkante, bestanden aus kohlenstofffaserverstärktem Kohlenstoff (CFC).
Zu dieser Kategorie gehören die ablativen Hitzeschilde[2] oder auch ablatives TPS (englisch Thermal Protection System). Ablative Hitzeschilde (von lat. ablatus ‚weggenommen‘) besitzen zwei Aufgaben: Zum einen sollen sie die Systeme vor den hohen Temperaturen beim Wiedereintritt schützen, zum anderen soll durch das durch die Strömung weggetragene aufgeschmolzene und verdampfte Material eine Kühlung erreicht werden. Bei dieser Art der (ablativen) Kühlung wird der physikalische Effekt des Phasenübergangs ausgenutzt, bei dem durch den Phasenwechsel des Materials Energie absorbiert wird. Der ablative Hitzeschild wurde zunächst für die Wiedereintrittsköpfe von Interkontinentalraketen entwickelt.
Ablative Hitzeschilde wurden bei Raumflugkörpern wie den amerikanischen Apollo- und werden bei den russischen Sojus-Raumschiffen, bei Landern, bei Hyperschallflugzeugen wie dem X-15 oder aber auch bei Interkontinentalraketen eingesetzt.
Ein solcher Hitzeschild besteht aus leichten, brennbaren Kacheln aus Kork- oder Glasfaser-Verbundwerkstoffen und/oder Kunststoffschaum (Polystyrol) auf einer Stützstruktur (meist eine Aluminiumlegierung). Auch gibt es ablative Hitzeschilde, die aus einem schwer schmelz- und verdampfbaren Kunstharz bestehen. Diese Ummantelung pyrolysiert und sublimiert beim Wiedereintritt in das umströmende Plasma. Die mit Ruß beladene Grenzschicht behindert den Strahlungstransport von Wärme aus dem Plasma der Stoßfront zur Oberfläche des Hitzeschildes. Dessen poröse, verkohlte Kruste stellt eine weitere Barriere dar. Zudem wird eindringende Wärme teils durch endotherme Reaktionen (Spaltung chemischer Bindungen, Verdampfung) verbraucht, teils mit dem Gas wieder nach außen transportiert (ablative Kühlung). Wärme, die dennoch durch den Hitzeschild dringt, wird durch das gut wärmeleitende Strukturmaterial so verteilt, dass keine schädlich hohen Temperaturen auftreten.
Die Idee zum ablativen Hitzeschild entstand bei der Entwicklung von Steuerflächen im Strahl von Raketentriebwerken. Auch heute noch wird bei den Düsen von preiswerten oder kleineren Raketentriebwerken die ablative Kühlung eingesetzt. Dazu wird die innere Oberfläche der Brennkammer bzw. Düse des Triebwerkes mit einer Schicht eines erst bei hohen Temperaturen verdampfenden Materials (z. B. Graphit, Wolfram, Molybdän oder Niob) ausgekleidet. Dieses passive Kühlungsverfahren wird zum Beispiel beim Merlin-Triebwerk der Falcon-1-Rakete, beim RS-68 Erststufentriebwerk der Delta IV, beim AJ-118 der Delta-II-Oberstufe und beim RD-58 des Block D/DM der Proton verwendet.[3]
Den Atmosphäreneintritt mit der bisher größten Belastung musste der ablative Hitzeschild der Atmosphärenkapsel, eine abgeworfene Tochtersonde der Raumsonde Galileo, überstehen, als sie am 7. Dezember 1995 mit ca. 170.000 km/h (47 km/s) in die Jupiteratmosphäre eintrat. Das Gas in der Schockfront erhitzte sich auf 16.000 K (ca. 15.700°C) und der Hitzeschild musste dabei eine Wärmestromdichte von 43 kW/cm² aushalten. Der Hitzeschild machte deshalb ca. 43 % des Gewichts der Eintauchkapsel aus und verbrannte und verdampfte beim Eintritt in die Jupiteratmosphäre zu ungefähr zwei Dritteln.[4]