Die kanonischen Gleichungen sind in der klassischen Mechanik die Bewegungsgleichungen eines Systems, das durch eine Hamiltonfunktion $ H=H(q,p,t) $ beschrieben wird, und werden deshalb auch Hamiltonsche Bewegungsgleichungen genannt.
Fundamentale Bewegungsgleichungen
Die fundamentalen Bewegungsgleichungen für die Koordinaten und Impulse lauten:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \dot q_i = \frac{\mathrm d q_i}{\mathrm d t} &= +\frac{\partial H}{\partial p_i} \\ \dot p_i = \frac{\mathrm d p_i}{\mathrm d t} &= -\frac{\partial H}{\partial q_i} \end{align}
.
Dabei bedeuten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_i
die generalisierten Koordinaten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_i
die generalisierten Impulse des Systems.
Die kanonischen Gleichungen folgen direkt aus dem Hamiltonschen Prinzip durch ein erweitertes Variationsprinzip, bei dem Koordinaten und Impulse gleichberechtigt behandelt werden.
Die kanonischen Gleichungen sind eng mit den kanonischen Transformationen verknüpft, die über die Hamilton-Jacobi-Gleichung die Brücke zur Quantenmechanik schlagen. Einen ersten Hinweis darauf bietet die elegante Formulierung der kanonischen Gleichungen mit Poissonklammern:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \dot{q}_i &= \left\{q_i,H\right\} = \frac{\partial q_i}{\partial q_j}\frac{\partial H}{\partial p_j} - \frac{\partial q_i}{\partial p_j}\frac{\partial H}{\partial q_j} = \frac{\partial H}{\partial p_i}\\ \dot{p}_i &= \left\{p_i,H\right\} = \frac{\partial p_i}{\partial q_j}\frac{\partial H}{\partial p_j} - \frac{\partial p_i}{\partial p_j}\frac{\partial H}{\partial q_j} = -\frac{\partial H}{\partial q_i} \end{align}
Verallgemeinerung
Für eine beliebige Phasenraumfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A = A(q,p,t)
des Systems kann man die totale Ableitung nach der Zeit aufgrund der Kettenregel schreiben als:
- $ {\frac {\mathrm {d} A}{\mathrm {d} t}}={\frac {\partial A}{\partial q_{i}}}{\frac {\mathrm {d} q_{i}}{\mathrm {d} t}}+{\frac {\partial A}{\partial p_{i}}}{\frac {\mathrm {d} p_{i}}{\mathrm {d} t}}+{\frac {\partial A}{\partial t}} $.
Aufgrund der kanonischen Gleichungen für Koordinaten und Impulse und der Definition der Poisson-Klammer folgt daraus
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \frac{\mathrm d A}{\mathrm dt} &= \frac{\partial A}{\partial q_i}\frac{\partial H}{\partial p_i} - \frac{\partial A}{\partial p_i}\frac{\partial H}{\partial q_i} + \frac{\partial A}{\partial t} \\ &= \{A,H\} + \frac{\partial A}{\partial t} \end{align}
.
An dieser Form erkennt man die Korrespondenz der klassischen Bewegungsgleichung einer Phasenraumfunktion mit der Heisenbergschen Bewegungsgleichung für Observable in der Quantenmechanik, wenn die Poisson-Klammer durch den Kommutator und die Hamiltonfunktion durch den Hamiltonoperator ersetzt wird.
Die kanonischen Gleichungen für Koordinaten und Impulse in ihrer Schreibweise mithilfe der Poisson-Klammern gehen als Spezialfall aus der verallgemeinerten Form wieder hervor.
Eine Größe ist erhalten, wenn sie der Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{A,H\} + \frac{\partial A}{\partial t} = 0
gehorcht. Wenn die betrachtete Größe nicht explizit zeitabhängig ist, vereinfacht sich dies weiter zu
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{A,H\} = 0
.
Literatur
- Herbert Goldstein; Charles P. Poole, Jr; John L. Safko: Klassische Mechanik. 3. Auflage. Wiley-VCH, Weinheim 2006, ISBN 3-527-40589-5.
- Wolfgang Nolting: Grundkurs Theoretische Physik 2 Analytische Mechanik. 7. Auflage. Springer, Heidelberg 2006, ISBN 3-540-30660-9.
- Wolfgang Nolting: Grundkurs Theoretische Physik 5/1 Quantenmechanik-Grundlagen. 6. Auflage. Springer, Heidelberg 2004, ISBN 3-540-40071-0.
- L.D.Landau, E.M.Lifschitz: Lehrbuch der Theoretischen Physik 1 Mechanik. 14. Auflage. Europa-Lehrmittel 1997, ISBN 978-3-8085-5612-2.