Lennard-Jones-Potential

Lennard-Jones-Potential

Das Lennard-Jones-Potential $ V $ (nach John Lennard-Jones) beschreibt in der physikalischen Chemie und in der Atom- und Molekülphysik die Bindungsenergie. Es nähert die Wechselwirkung zwischen ungeladenen, nicht chemisch aneinander gebundenen Atomen an.

Fehler beim Erstellen des Vorschaubildes:
Abbildung 1: Das Lennard-Jones-(12, 6)-Potential $ V $, aufgetragen über dem Teilchenabstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r .
Im Bereich negativer Steigung wirken abstoßende Kräfte, im Bereich positiver Steigung anziehende.

Beschreibung

Für große Entfernungen zwischen zwei Teilchen überwiegen die anziehenden Kräfte; bei ihnen handelt es sich um Van-der-Waals-Kräfte.

Nähert man die jeweiligen Teilchen an, so überwiegt unterhalb eines bestimmten Abstandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r_m \approx 1{,}12 \sigma (siehe Abbildung 1) der abstoßende Anteil, und die potentielle Energie steigt schnell an. Die abstoßenden Kräfte kommen dadurch zustande, dass die Elektronen bei Annäherung der Atomhüllen teilweise auf energetisch höhere Orbitale ausweichen müssen, weil sie nach dem Pauli-Prinzip nicht zu mehreren den gleichen Zustand besetzen können (Pauli Repulsion).

Der anziehende Anteil des Lennard-Jones-Potentials wird abgeleitet aus der London-Formel (Näherung):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V = - \frac{C}{r^6} ,

wobei

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C ein relativ komplizierter Term ist, der stoffspezifische Konstanten wie die Ionisierungsenergie für beide betrachteten Teilchen enthält, und
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r der Abstand zwischen den Teilchen.

Der abstoßende Anteil wird durch eine ähnliche Gleichung beschrieben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V = \frac {C_n} {r^n}

Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n > 6 .

Im Lennard-Jones-(n, 6)-Potential werden die beiden Anteile zusammengefasst:

$ V(r)={\frac {C_{n}}{r^{n}}}-{\frac {C}{r^{6}}} $

Aus praktischen Gründen wird oft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n = 12 gewählt, weil dann bei der Berechnung der Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1/r^6 nur quadriert werden muss. Es entsteht das Lennard-Jones-(12, 6)-Potential, das typischerweise in einer der beiden folgenden Formen geschrieben wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{alignat}{2} V(r) & = 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right] && = 4 \varepsilon \cdot \left( \frac{\sigma}{r} \right)^{6} \cdot \left[ \left( \frac{\sigma}{r} \right)^6 - 1 \right]\\ & = \varepsilon \left[ \left( \frac{r_m} {r} \right)^{12} - 2 \left( \frac{r_m} {r} \right)^6 \right] && = \varepsilon \cdot \left( \frac{r_m} {r} \right)^{6} \cdot \left[ \left( \frac{r_m} {r} \right)^6 - 2 \right] \end{alignat}

Hierbei ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varepsilon > 0 die „Tiefe“ der Potentialmulde in Einheiten Joule, die durch die beiden Einflüsse entsteht.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma der Teilchenabstand, an dem das Lennard-Jones-Potential eine Nullstelle besitzt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(r = \sigma) = 0 .
  • $ r_{m}={\sqrt[{6}]{2}}\cdot \sigma \approx 1{,}12\cdot \sigma $ der Teilchenabstand, in dem das Lennard-Jones-Potential sein Minimum erreicht. In diesem Abstand sind die Kräfte aus dem anziehenden und abstoßenden Anteil des Potentials gleich groß und heben sich auf, so dass in diesem Abstand in Summe keine Kraft zwischen den Teilchen wirkt.

Das Lennard-Jones-Potential ist ein Spezialfall des Mie-Potentials

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V = \frac{C_n}{r^n} - \frac{C_m}{r^m}

das 1903 von Gustav Mie eingeführt wurde.[1]

Sonstiges

Eine weitere Form des Lennard-Jones-Potentials ist das Lennard-Jones-(exp, 6)-Potential, bei dem der abstoßende Term exponentiell ist.[2] Es ist ein Spezialfall des Buckingham-Potentials:[3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(r) = \frac{\varepsilon}{1 - 6/\alpha} \cdot \left\langle \frac6{\alpha} \cdot \exp \left[ \alpha \left( 1 - \frac{r}{\sigma} \right) \right] - \left( \frac{\sigma}{r} \right)^6 \right\rangle

mit der „Steilheit“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha als abstoßender Kraft.

Einzelnachweise

  1. Mie-Potential (Online)
  2. Edward A. Mason: Transport Properties of Gases Obeying a Modified Buckingham (Exp‐Six) Potential. In: Journal of Chemical Physics. Nr. 22, 1954, S. 169–186, doi:10.1063/1.1740026.
  3. R. A. Buckingham: The Classical Equation of State of Gaseous Helium, Neon and Argon. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Nr. 168, 1938, S. 264–283, doi:10.1098/rspa.1938.0173.