Eine Mikrokanalplatte (gebräuchlich ist auch der englische Begriff microchannel plate, abgekürzt MCP) ist ein flächenhafter, bildauflösender Sekundärelektronenvervielfacher.
Sie dient zur rauscharmen Verstärkung geringer Ströme von freien Elektronen, Ionen oder hochenergetischen Photonen. Diese schlagen auf die Platte auf und erzeugen dort Sekundärelektronen, die dann detektiert werden können.
Zwischen beiden metallisierten Plattenseiten liegt eine Beschleunigungsspannung an, die Platte selbst besteht aus Bleiglas. Die Platte ist ähnlich wie ein Sieb durchlöchert beziehungsweise durchzogen von mikroskopisch feinen Kanälen, die typischerweise einen Lochabstand von ca. 10 µm und einen Durchmesser von ca. 6–25 µm besitzen. Die Innenwände der Kanäle bestehen aus einem Halbleiter-Material. Die Platte hat eine Dicke von wenigen Zehntel Millimetern (bis zu ca. 1 mm) und die Kanäle sind um ca. 10° gegen die Plattenachse verkippt, so dass die einfallenden Elektronen mit Sicherheit mehrmals die Kanalwand treffen. Sie werden dann von einer zwischen den Platten längs der Kanäle anliegenden elektrischen Spannung beschleunigt und vervielfachen sich bei jedem Wandstoß, jeder einzelne Kanal verhält sich somit wie ein mikroskopischer Kanalelektronenvervielfacher, oder der stufenweise Sekundärelektronenvervielfacher in Photomultipliern.
An der Austrittsseite hat sich die Zahl der Elektronen durch Vielfachstöße mit der Kanalwand um das ca. 1000-fache erhöht. Durch eine Nachbeschleunigungsstrecke werden die verstärkten (=vervielfachten) Elektronen auf den eigentlichen Detektor gelenkt, meist einen Leuchtschirm, aber auch beispielsweise ein ebCCD – das {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), eine Sonderform des CCD zum Nachweis von freien Elektronen.
Eingesetzt werden Mikrokanalplatten zum Beispiel in Bildverstärkern und in der Elektronenspektroskopie sowie in der Massenspektrometrie. In letzterem Fall kann die Eintrittsseite mit speziellen Materialien beschichtet sein, um die Empfindlichkeit für die nachzuweisende Teilchenart zu erhöhen. Durch diese zusätzliche Beschichtung werden zum Beispiel Ionen effektiver in Elektronen umgewandelt als in unbeschichteten MCPs. Da freie Elektronen nachgewiesen werden sollen, können MCPs nur im Hochvakuum eingesetzt werden. Eine weitere Anwendung von MCPs stellt die Helligkeitssteigerung von Kathodenstrahlröhren dar. MCPs werden daher in schnellen analogen Oszilloskopen (Tektronix 7104, 2467B) eingesetzt, um auch selten auftretende Ereignisse sichtbar zu machen.
Qualitätsbestimmende Parameter sind insbesondere:
Schließlich ist auch die Homogenität all dieser Parameter über die gesamte aktive Fläche der MCP ein entscheidendes Qualitätsmerkmal.
Der kritischste Faktor einer MCP ist die Gleichmäßigkeit der mikroskopisch feinen Kanäle. Die Herstellung erfordert die Beherrschung ähnlicher Techniken wie bei einer Faseroptik: dort besteht jeder einzelne der miteinander verschmolzenen Lichtleiter aus Kernglas und Mantelglas, die in einem ersten Arbeitsgang miteinander verschmolzen werden wie etwa einzeln auf Spaghetti aufgeschrumpfte Makkaroni/Bucatini. In der Folge wird eine zunehmend größere Anzahl dieser gebündelten Einzelstränge miteinander verschmolzen und in halbflüssigem Zustand gezogen oder verpresst, wobei man nach mehreren Durchläufen mikroskopisch feine Strukturen in extrem hoher Regelmäßigkeit erhalten kann.
Der so gezogene heterogene Strang wird anschließend in feine Scheiben aufgetrennt, aus denen im Fall der MCP das Kernglas chemisch herausgeätzt wird – hier bildet also das verbleibende Mantelglas den aktiven Halbleiter des Bauteils.