Modell harter Kugeln

Modell harter Kugeln

Harte Kugeln sind ein häufig verwendetes Teilchenmodell für Fluide und Festkörper in der statistischen Mechanik. Sie sind definiert als nicht-durchdringbare Kugeln im Raum, die sich nicht überlappen können, und modellieren die starke Abstoßung, die Atome und kugelförmige Moleküle auf sehr kleinen Distanzen zueinander erfahren. Untersucht werden harte Kugeln mittels analytischer Methoden, durch Simulation molekularer Dynamik sowie die experimentelle Untersuchung von bestimmten Kolloid-Modellsystemen. Siehe auch Hard-core-Prozess.

Formale Definition

Harte Kugeln mit Durchmesser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma sind Teilchen mit dem folgenden paarweisen Wechselwirkungspotential:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V\left(\mathbf{r}_{1},\mathbf{r}_{2}\right)=\begin{cases} 0 & \left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\geq\sigma\\ \infty & \left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|<\sigma \end{cases}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{r}_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{r}_2 die Positionen der beiden Teilchen beschreiben.

Harte-Kugeln-Modell für ein Gas

Die ersten drei Virialkoeffizienten für harte Kugeln können analytisch ermittelt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{B_2}{v_0} = $ 4{\frac {}{}} $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{B_3}{{v_0}^2} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 10{\frac{}{}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{B_4}{{v_0}^3} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\frac{712}{35}+\frac{219 \sqrt{2}}{35 \pi}+\frac{4131}{35 \pi} \arccos{\frac{1}{\sqrt{3}}}\approx 18{,}365

Koeffizienten höherer Ordnung können durch Monte-Carlo-Integration numerisch gefunden werden. Beispielhaft seien die folgenden aufgelistet:

$ {\frac {B_{5}}{{v_{0}}^{4}}} $ = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 28{,}24 \pm 0{,}08
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{B_6}{{v_0}^5} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 39{,}5 \pm 0{,}4
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{B_7}{{v_0}^6} = $ 56{,}5\pm 1{,}6 $

Eine Tabelle von Virialkoeffizienten für bis zu acht Dimensionen können im SklogWiki[1] gefunden werden.

Das Harte-Kugeln-System bildet einen Flüssig-Fest-Phasenübergang zwischen den Packungsdichten für Gefrieren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta_\mathrm{f}\approx 0{,}494 und Schmelzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta_\mathrm{m}\approx 0{,}545 . Der Druck divergiert bei der dichtesten Zufallspackung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta_\mathrm{rcp}\approx 0{,}644 für den metastabilen Flüssigkeitszweig und bei dichtesten Kugelpackung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta_\mathrm{cp}=\sqrt{2}\pi/6 \approx 0{,}74048 für den stabilen festen Zweig.

Harte-Kugeln-Modell für eine Flüssigkeit

Der Strukturfaktor für eine Flüssigkeit aus harten Kugeln kann über die Percus-Yevick-Näherung berechnet werden.

Phasendiagramm eines Systems harter Kugeln (Durchgezogene Line – stabiler Ast, gestrichelte Line – metastabiler Ast): Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P als Funktion der Packungsdichte (Kristallographie) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta

Verallgemeinerungen

Nicht nur Kugeln können mit einem harten Wechselwirkungspotential ausgestattet werden, sondern auch Körper beliebiger Geometrie.

Literatur

  • J. P. Hansen, I. R. McDonald: Theory of Simple Liquids. 4. Auflage, Academic Press, London 2013, ISBN 978-0-12-387032-2.

Weblinks

Einzelnachweise

  1. Hard sphere: virial coefficients page. In: SklogWiki – a wiki for statistical mechanics and thermodynamics. 20. Mai 2014, abgerufen am 20. Juli 2015 (Lua-Fehler in Modul:Multilingual, Zeile 149: attempt to index field 'data' (a nil value)).