Paschen-Gesetz

Paschen-Gesetz

Das Paschen-Gesetz beschreibt als Näherungsformel den experimentell bestimmten Zusammenhang zwischen Durchschlagspannung, Gasdruck und der Schlagweite, dem räumlichen Abstand der Elektroden. Es wurde 1889 von Friedrich Paschen experimentell bestimmt und später von John Sealy Townsend theoretisch beschrieben.[1][2]

Inhalt des Gesetzes

Verlauf der Zündspannung U bzw. "V" über Druck p mal Abstand d für verschiedene Gase in doppellogarithmischer Darstellung

Das Paschen-Gesetz besagt, dass die Durchschlagspannung eine Funktion des Produktes aus Gasdruck und Schlagweite ist, wenn die Bedingungen für den Townsend-Mechanismus erfüllt sind, das heißt ein weitgehend homogenes Feld und vernachlässigbare Raumladung vorliegt. Die Gleichung, die John Sealy Townsend erstmals herleitete, lautet

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U = p d \cdot \frac{B}{\ln(p d \cdot A) - \ln \Big(\! \ln(1 + \gamma^{-1}) \Big) }

wobei

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p den Gasdruck,
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d den Elektrodenabstand,
  • $ \gamma $ den 3. Townsend-Koeffizienten[3] und
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A und $ B $ nachfolgend hergeleitete Konstanten

darstellen.

Die Paschenkurve ist die graphische Darstellung des Paschen-Gesetzes. Sie besitzt ein Minimum für kleine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): pd -Werte, das für Luft bei 340 V bei ca. 7,3 bar·µm und für SF6 bei 507 V bei ca. 3,5 bar·µm liegt. Oberhalb des Minimums spricht man vom Weitdurchschlag. Dort verhält sich die Kurve linear mit $ Bpd $. In diesem Bereich sinkt entweder die durch die Spannung hervorgerufene Feldstärke oder die mittlere freie Weglänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda der Teilchen wird durch den Druck reduziert.[4] Darunter, im sogenannten Nahdurchschlag, steigt die Durchschlagspannung wieder steil an. Dies rührt daher, dass die Distanz zu klein oder der Druck für die Stoßionisation zu gering wird. Bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d \le \lambda ist Stoßionisation nicht mehr möglich.

Es gibt allerdings Hinweise darauf, dass die Paschenkurve unterhalb von 3 µm keine Gültigkeit besitzt und die Durchschlagspannung weiter abfällt[5].

Physikalischer Hintergrund

Zwischen zwei Elektroden befinden sich außer im perfekten Vakuum immer Atome und auch immer ein paar wenige freie Elektronen und Ionen. Durch das elektrische Feld zwischen den Elektroden werden die geladenen Teilchen beschleunigt. Die Ionen sind viel schwerer und größer als die Elektronen, werden also nur langsam beschleunigt und kollidieren schnell wieder mit anderen Atomen oder Ionen. Die Elektronen können jedoch auf eine Geschwindigkeit beschleunigt werden, die ihnen genug Energie verleiht, um beim Auftreffen auf ein Atom dieses zu ionisieren (Stoßionisation). Die dabei entstehenden freien Elektronen werden wiederum beschleunigt und erzeugen noch mehr freie Elektronen, sodass ein Lawineneffekt einsetzt.

Ein elektrischer Durchbruch tritt also frühestens dann auf, wenn die freien Elektronen auf eine Energie beschleunigt werden, die ausreicht, dass sie auf dem Weg zur Anode mindestens ein Atom ionisiert haben. Die angelegte Spannung muss also einen bestimmten Wert erreichen, der Durchbruchspannung genannt wird. Diese ist offensichtlich von der Ionisationsenergie der Gasatome abhängig. Die erreichbare Energie eines Elektrons hängt von seiner mittleren freien Weglänge ab, der Strecke, die es zurücklegt, bis es auf ein Atom stößt. Je länger dieser Weg ist, desto höher die Energie durch die Beschleunigung. Die freie Weglänge hängt von der Größe der Atome und deren Dichte ab, also auch von Temperatur und Druck.

Werte der Konstanten

Typische Werte für die Konstanten A und B einiger Gase:

Gas A
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \Big(\mathrm{\tfrac{1}{Pa\,m}}\Big)}
B
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \Big(\mathrm{\tfrac{V}{Pa\,m}}\Big)}
Gültigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \tfrac{E}{p}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \Big(\mathrm{\tfrac{V}{Pa\,m}}\Big)}
Quelle
Luft 10.95 273.8 075 – 600 [6]
Stickstoff N2 09.00 256.5 075 – 450
Wasserstoff H2 03.83 104.1 015 – 450
Helium He 02.25 025.5 015 – 100
Argon Ar 10.20 176.3 075 – 450
Kohlenstoffdioxid CO2 15.00 349.5 375 – 750

Herleitung

Grundlagen

Um die Durchschlagspannung zu berechnen, geht man von einem Plattenkondensator mit dem Plattenabstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d aus. Die Kathode befindet sich am Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x=0 . Man kann also von einem homogenen elektrischen Feld zwischen den Platten ausgehen.

Für die Stoßionisation ist es Voraussetzung, dass die Elektronenenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_{e} größer als die Ionisationsenergie $ E_{I} $ der Gasatome ist, die sich zwischen den Platten befinden. Pro Weglänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x werden die Anzahl von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha Ionisationen auftreten. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha ist als erster Townsend-Koeffizient bekannt, da er von Townsend in [7], section 17 eingeführt wurde. Die Änderung des Stroms der Elektronen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{e} kann also für den Plattenkondensatoraufbau so beschrieben werden:

$ \Gamma _{e}(x=d)=\Gamma _{e}(x=0)\,\mathrm {e} ^{\alpha d}\qquad \qquad (1) $

(Die Anzahl an freien Elektronen auf der Anode ist also die Anzahl der freien Elektronen auf der Kathode, die sich durch Stoßionisation vermehrt hat. Je größer also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d und/oder $ \alpha $ ist, desto mehr freie Elektronen werden erzeugt.)

Die Anzahl an erzeugten freien Elektronen bei der Entladung ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{e}(d)-\Gamma_{e}(0) = \Gamma_{e}(0)\left(\mathrm{e}^{\alpha d}-1\right)\qquad\qquad(2)

Unter Vernachlässigung, dass Atome mehrfach ionisiert werden können, ist die Anzahl an erzeugten Ionen gleich der Anzahl der erzeugten freien Elektronen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{i}(0)-\Gamma_{i}(d) = \Gamma_{e}(0)\left(\mathrm{e}^{\alpha d}-1\right)\qquad\qquad(3)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{i} ist der Strom der Ionen. Damit die Entladung nicht sofort wieder erlischt, müssen freie Elektronen auf der Kathodenoberfläche erzeugt werden. Dies ist möglich, da die Ionen beim Auftreffen auf die Kathode Sekundärelektronen herausschlagen. (Für sehr hohe angelegte Spannungen kann auch Feldemission auftreten.) Ohne Feldemission kann man schreiben

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{e}(0) = \gamma\,\Gamma_{i}(0)\qquad\qquad (4)

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma die Anzahl der Elektronen ist, die ein auftreffendes Ion im Schnitt herausschlägt. Dies wird als dritter Townsend-Koeffizient bezeichnet. Angenommen, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{i}(d)=0 erhält man eine Beziehung zwischen den Townsend-Koeffizienten, indem man (4) in (3) einsetzt und umformt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha d=\ln\left(1+\frac{1}{\gamma}\right)\qquad\qquad(5)

Stoßionisation

Die Frage ist nun, wie groß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha ist. Die Anzahl der Ionisationen hängt davon ab, wie wahrscheinlich es ist, dass ein Elektron ein Ion trifft. Diese Wahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P ist das Verhältnis des Wirkungsquerschnitts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma eines Stoßes zwischen Elektron und Ion im Verhältnis zur insgesamt zu Verfügung stehenden Fläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A , durch die das Elektron fliegen kann:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P = \frac{N\sigma}{A} = \frac{x}{\lambda}\qquad\qquad(6)

Wie der zweite Teil der Gleichung verdeutlicht, kann man die Wahrscheinlichkeit auch als Verhältnis der vom Elektron zurückgelegten Wegstrecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x zur mittleren freie Weglänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda (ehe wieder eine Ionisation auftritt) ausdrücken.

Datei:Wirkungsquerschnitt-Skizze.svg
Veranschaulichung des Wirkungsquerschnitts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma : Wenn der Mittelpunkt von Teilchen b in den blauen Kreis eindringt, kommt es zu Kollision mit Teilchen a. Die Fläche des Kreises ist somit der Wirkungsquerschnitt und sein Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r ist damit die Summe der Radien der Teilchen.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N ist die Anzahl an Elektronen, denn jedes kann stoßen. Die Anzahl lässt sich mit der Zustandsgleichung des Idealen Gases

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): pV=Nk_\mathrm{B}T\qquad\qquad(7)
(Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p : Druck, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V : Volumen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_\mathrm{B} : Boltzmann-Konstante, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T : Temperatur)

ausdrücken. Wie nebenstehende Skizze verdeutlicht, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma = \pi (r_a + r_b)^2 . Da der Radius eines Elektrons gegenüber dem Radius eines Ions Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r_I vernachlässigt werden kann, vereinfacht es sich zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma = \pi r_I^2 . Nutzt man diese Beziehung, setzt (7) in (6) ein und formt nach $ \lambda $ um, erhält man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda = \frac{k_\mathrm{B}T}{\pi r_{I}^{2} p}=\frac{1}{L p}\qquad\qquad(8)

wobei der Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L nur zur besseren Übersichtlichkeit eingeführt wurde.

Die Änderung des Stroms von noch nicht kollidierten Elektronen an jedem Wegpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x kann man als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\Gamma_e(x) = -\Gamma_e(x)\,\frac{\mathrm{d}x}{\lambda_e}\qquad\qquad(9)

ausdrücken. Diese Differentialgleichung lässt sich leicht lösen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_e(x) = \Gamma_e(0)\,\exp{\left(-\frac{x}{\lambda_e}\right)}\qquad\qquad(10)

Die Wahrscheinlichkeit, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda > x ist, also dass an der Stelle $ x $ noch kein Stoß stattgefunden hat, ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P(\lambda > x) = \frac{\Gamma_e(x)}{\Gamma_e(0)} = \exp{\left(-\frac{x}{\lambda_e}\right)}\qquad\qquad(11)

Gemäß seiner Definition ist $ \alpha $ die Anzahl an Ionisationen pro Weglänge und damit das Verhältnis aus der Wahrscheinlichkeit, bei der in der mittleren freien Weglänge der Ionen noch keine Kollision stattgefunden hat, zur mittleren freien Weglänge der Elektronen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = \frac{P(\lambda > \lambda_I)}{\lambda_e} = \frac{1}{\lambda_e}\exp\left(- \frac{\lambda_{I}}{\lambda_{e}}\right) = \frac{1}{\lambda_e}\exp\left(-\frac{E_{I}}{E_{e}}\right)\qquad\qquad(12)

Dabei wurde bedacht, dass die Energie $ E $, die ein geladenes Teilchen zwischen zwei Stößen aufnehmen kann, von der elektrischen Feldstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{E} und der Ladung $ Q $ abhängt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \lambda Q\mathcal{E}\qquad\qquad(13)

Durchschlagspannung

Für den Plattenkondensator gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \frac{U}{d} , wobei $ U $ die angelegte Spannung ist. Da von einer einfachen Ionisierung ausgegangen wurde, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q die Elementarladung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e . Man kann nun (13) und (8) in (12) einsetzen und erhält

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha=L\cdot p\,\exp\left(- \frac{L\cdot p\cdot d\cdot E_{I}}{eU}\right)\qquad\qquad(14)

Setzt man dies in (5) ein und formt nach $ U $ um, erhält man das Paschen-Gesetz für die Durchschlagspannung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U_{\mathrm{Durchschlag}} , die zuerst von Paschen in[1] untersucht wurden und dessen Gleichung zuerst von Townsend in [2], section 227 hergeleitet wurde:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U_{\mathrm{Durchschlag}}=\frac{L\cdot p\cdot d\cdot E_{I}}{e\left(\ln(L\cdot p\cdot d)-\ln\left(\ln\left(1+\gamma^{-1}\right)\right)\right)}\qquad\qquad(15)
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle L=\frac{\pi r_{I}^{2}}{k_\mathrm{B}T}

Die eingangs erläuterten Konstanten $ A $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B lauten somit:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle A=L=\frac{\pi r_{I}^{2}}{k_\mathrm{B}T}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle B=\frac{L\cdot E_I}{e}=\frac{\pi r_{I}^{2} E_I}{T k_\mathrm{B} e}

Plasmazündung

Plasmazündung nach der Definition von Townsend (Townsend-Entladung) bedeutet, dass das Plasma einen Punkt erreicht, an dem es von selbst brennt, unabhängig von einer externen Quelle von freien Elektronen. Dies bedeutet, dass die Elektronen der Kathode die Anode im Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d erreichen und dabei mindestens ein Atom auf dem Weg dahin ionisiert haben müssen. Gemäß der Definition von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha muss also diese Beziehung erfüllt sein:

$ \alpha d\geq 1\qquad \qquad (16) $

Verwendet man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha d = 1 statt (5), erhält man für die Durchschlagspannung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U_{\text{Durchschlag Townsend}} = \frac{L\cdot p\cdot d\cdot E_{I}}{e\cdot \ln(L\cdot p\cdot d)} = \frac{d\cdot E_{I}}{e\cdot \lambda_e\,\ln\left(\frac{d}{\lambda_e}\right)}\qquad\qquad(17)

Schlussfolgerung/Gültigkeit

Das Paschen-Gesetz setzt also voraus, dass

  • es vor der Zündung schon freie Elektronen auf der Kathode gibt ($ \Gamma _{e}(x=0)\neq 0 $), die beschleunigt werden können um die Stoßionisation auszulösen. Solche sogenannten Seedelektronen können durch Ionisation durch kosmische Hintergrundstrahlung erzeugt werden.
  • die Erzeugung weiterer freier Elektronen nur durch Stoßionisation geschieht. Das Paschen-Gesetz gilt also nicht, wenn externe Elektronenquellen vorhanden sind. Dies kann z. B. Licht sein, das Sekundärelektronen durch den photoelektrischen Effekt erzeugt. Dies muss bei Experimenten berücksichtigt werden.
  • ein ionisiertes Atom nur zu je einem freien Elektron führt. Mehrfachionisationen treten jedoch in der Praxis immer auf.
  • freie Elektronen auf der Kathodenoberfläche durch die auftreffenden Ionen erzeugt werden. Die Anzahl der dabei erzeugten Elektronen ist jedoch stark vom Kathodenmaterial, dessen Oberflächenbeschaffenheit (Rauheit, Verunreinigungen) und den Umgebungsbedingungen (Temperatur, Luftfeuchtigkeit etc.) abhängig. Die experimentelle Bestimmung des Faktors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma ist daher kaum reproduzierbar möglich.
  • das elektrische Feld homogen ist.

Einzelnachweise

  1. 1,0 1,1 F. Paschen, “Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz,” Annalen der Physik, vol. 273, no. 5, pp. 69 – 96, 1889. doi:10.1002/andp.18892730505
  2. 2,0 2,1 J. Townsend: Electricity in Gases. Clarendon Press, 1915.
  3. Andreas Küchler: Hochspannungstechnik. 2. Auflage. Springer-Verlag, Berlin/Heidelberg 2005, ISBN 978-3-540-78412-8, S. 159.
  4. Taschenbuch der elektrischen Energietechnik: mit 102 Tabellen. ISBN 3-446-40475-9, S. 289 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. Emmanouel Hourdakis, Brian J. Simonds, and Neil M. Zimmerman: Submicron gap capacitor for measurement of breakdown voltage in air. In: Rev. Sci. Instrum. 77. Jahrgang, Nr. 3, 2006, S. 034702, doi:10.1063/1.2185149.
  6. Jane Lehr, Pralhad Ron: Electrical Breakdown in Gases. In: Foundations of Pulsed Power Technology. John Wiley & Sons, Inc., 2017, ISBN 978-1-118-88650-2, S. 369–438, doi:10.1002/9781118886502.ch8 (wiley.com [abgerufen am 14. September 2017]).
  7. J. Townsend: The Theory of Ionization of Gases by Collision. Constable, 1910.

it:Curve di Paschen