Rückstoßantrieb

Rückstoßantrieb

Datei:Rueckstossantrieb.png
Rückstoßprinzip einer Rakete

Der Rückstoßantrieb oder Reaktionsantrieb ist eine praktische Anwendung des 3. Newtonschen Axioms. Der Rückstoßantrieb führt sein Antriebsmedium mit; Rückstoßantriebe, die auf Verbrennung beruhen, führen sowohl ihren Treibstoff als auch ihren Oxidator mit. Das angetriebene Objekt, zum Beispiel eine Rakete, wird durch den Rückstoß mit der gleichen Kraft nach vorn beschleunigt, mit der das Antriebsmedium nach hinten ausgestoßen wird.

Im Weltraum ist der Rückstoßantrieb die einzige Möglichkeit, ein Raumschiff abseits von massereichen Himmelskörpern und starken Strahlungsquellen zu beschleunigen.

Physikalischer Hintergrund

Entsprechend dem 3. Newtonschen Axiom (actio = reactio, auch „Reaktionsprinzip“ oder „Wechselwirkungsprinzip“), werden zwei Massen, die eine Kraft aufeinander ausüben, beschleunigt. Somit ergibt sich für beide Massen (nach Beendigung der Krafteinwirkung) eine Geschwindigkeit. Entsprechend der Definition für den Impuls

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec p = m \cdot \vec v

ergeben sich für diesen Fall folgende Relationen der Impulse zueinander:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{p}_1 = -\vec{p}_2 \qquad \mathrm{oder} \qquad m_1 \cdot \vec v_1 = m_2 \cdot -\vec v_2

(Hierbei stellt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{p}_1 zum Beispiel bei einer Rakete den Impuls der ausgestoßenen Verbrennungsprodukte dar, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\vec{p}_2 den dadurch entstehenden entgegengesetzten Impuls der Rakete)

Dabei ist zu berücksichtigen, dass zur Erzeugung dieser Impulse eine definierte Energie zur Verfügung stehen muss, welche die entsprechende Beschleunigungsarbeit verrichten kann. Hat eine Masse einen Impuls, verfügt sie über eine kinetische Energie.

Bei der Berechnung der anteiligen Energiemengen gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_{m_1} = \frac{m_2}{m_1 + m_2} \cdot E_\mathrm{ges} \qquad \mathrm{und} \qquad E_{m_2} = \frac{m_1}{m_1 + m_2}\cdot E_\mathrm{ges}

Bei einem kontinuierlichen Prozess ergibt sich folgender, auch als Raketengrundgleichung bekannter, mathematischer Zusammenhang:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_n(t) = v_s \cdot \ln\left(\frac{m(0)}{m(t)}\right)

oder auch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{v}_n(t) = -\vec{v}_s \cdot \ln \left(\frac{m(0)}{m(t)}\right)= \vec{v}_s \cdot \ln \left(\frac{m(t)}{m(0)}\right)

Wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_s gleich der Relativgeschwindigkeit der Stützmasse zur eigentlichen Nutzmasse ist. Hierbei ist zu berücksichtigen, dass bei Fortschreiten des Prozesses die Stützmasse kontinuierlich abnimmt und schlussendlich nur noch die Nutzmasse mit ihrer Endgeschwindigkeit $ v_{n} $ (relativ zum Startort) verbleibt.

Ein erstaunlicher Effekt stellt sich bei einem Verhältnis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 = \ln\left(\frac{m(0)}{m(t)}\right) ein. Ab diesem Zeitpunkt bewegt sich die Rakete sowie die von ihr ausgeworfenen Stützmasse von einem am Startort der Rakete verbliebenen Beobachter in die gleiche Richtung weg, allerdings mit unterschiedlichen Geschwindigkeiten.

Rückstoßantriebe, die auf der Basis von Fluiden arbeiten

Ausströmgeschwindigkeit

In der Rückstoßkammer ist der Druck (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_i ) höher als der Umgebungsdruck (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_a ). Das in der Kammer befindliche Medium tritt auf Grund dieser Druckdifferenz mit einer bestimmten Geschwindigkeit (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_s ) aus der Düse aus. Von Bedeutung ist weiterhin die Dichte (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho ) des ausströmenden Mediums (innerhalb der Kammer, also unter dem Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_i stehend).

Aus der Energieerhaltung folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W=(p_i-p_a) \cdot dV=\tfrac{1}{2} \cdot dm \cdot v_s^2=\tfrac{1}{2} \cdot dV \cdot \rho \cdot v_s^2

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow \frac{2(p_i-p_a)}{\rho}=v_s^2

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_s = \sqrt {\frac {2 \cdot (p_i - p_a)}{\rho}}

Diese Gleichung gilt nur bei hinreichend kleinen Düsen, bei denen der Kammerinhalt relativ zur Kammer nur gering beschleunigt wird. Zudem wurden mögliche Reibungsverluste vernachlässigt.

Bei Gasen ist zu beachten, dass deren Dichte (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho ) abhängig vom Druck und der Temperatur ist. Diese lässt sich (näherungsweise) mittels der Thermischen Zustandsgleichung idealer Gase

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p \cdot V = m \cdot R_s \cdot T

durch Umstellung nach

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho = \frac {m}{V} = \frac {p}{ R_s \cdot T}

berechnen.

Da bei Gasen die Dichte proportional zum Druck ist, kann eine Erhöhung der Austrittsgeschwindigkeit nur durch eine Temperaturerhöhung erzielt werden.

Durchsatz

Entsprechend dem Querschnitt (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A ) der Düse, der Dichte (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho ) des austretenden Mediums und dessen Austrittsgeschwindigkeit (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_s ) lässt sich der oft auch als Massenstrom bezeichnete Durchsatz (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu ) ermitteln.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu = A \cdot \rho \cdot v_s

Schub

Die erzeugte Schubkraft (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_s ) kann durch die Multiplikation des Durchsatzes (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu ) mit der Austrittsgeschwindigkeit (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_s ) des Mediums berechnet werden.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_s = \mu \cdot v_s

Oder durch Ersetzen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu = A \cdot \rho \cdot v_s

$ F_{s}=A\cdot \rho \cdot v_{s}^{2} $

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_s = A \cdot \rho \cdot \frac {2 \cdot \Delta p}{\rho}

erhält man die massenunabhängige Beziehung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_s = 2 \cdot \Delta p \cdot A

Benötigte Triebwerksleistung

Hierbei ist nicht die Leistung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_\mathrm{Nutz} ) gemeint, mit der ein solches Triebwerk eine Masse bewegen (beschleunigen) würde, sondern die Leistung, die benötigt wird, um die entsprechende Schubkraft zu erzeugen. Man ermittelt diese Leistung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_\mathrm{Triebwerk} ) über den gegebenen Durchsatz (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu ):

$ \mu ={\frac {\Delta m}{\Delta t}} $

Um die Masse der ausströmenden Gase Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta m auf die Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_s zu beschleunigen, muss die Arbeit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W=\frac {1}{2} \cdot \Delta m \cdot v_s^2

verrichtet werden. Somit ergibt sich die Triebwerksleistung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_\mathrm{Triebwerk} zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_\mathrm{Triebwerk} = \frac {W}{\Delta t}=\frac {1}{2} \cdot \frac {\Delta m}{\Delta t} \cdot v_s^2=\frac {1}{2} \cdot \mu \cdot v_s^2

bzw. wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_s=\mu \cdot v_s :

$ P_{\mathrm {Triebwerk} }={\frac {1}{2}}\cdot v_{s}\cdot F_{s} $

Um bei einem hypothetischen Photonenantrieb die gleiche Schubkraft zu erzeugen, müsste die Triebwerksleistung erheblich höher liegen als bei einem herkömmlichen chemischen Raketenantrieb.

Nutzleistung

Die tatsächliche von einem solchen Rückstoßantrieb umsetzbare Leistung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{Nutz(t)} ) ergibt sich durch Umstellung der Formel für die Beschleunigungsarbeit:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_\mathrm{Beschl.} = m \cdot \frac {v_2^2-v_1^2}{2}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{\mathrm{Nutz}(t)} = m(t) \cdot \frac {v_2^2-v_1^2}{2 \cdot t} = m(t) \cdot a \cdot \frac {v_2 + v_1}{2} = F_s \cdot \frac {v_2 + v_1}{2}

Dabei stellen $ v_{1} $ die Anfangsgeschwindigkeit und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_2 die Endgeschwindigkeit des Beschleunigungsvorganges dar.

Anwendungen

Siehe auch

Weblinks

Belege


fa:پیشرانش