Die Renormierungsgruppe (RG) beschreibt die Abhängigkeit bestimmter physikalischer Größen von der Längenskala. Ursprünglich ein Konzept der Quantenfeldtheorie, erstreckt sich sein Anwendungsbereich heutzutage auch auf die Festkörperphysik, Kontinuumsmechanik, Kosmologie und Nanotechnologie. Mit der RG im Zusammenhang stehen die Betafunktion und die Callan-Symanzik-Gleichungen.
Als Renormierungsgruppe bezeichnet man mehrere ähnliche aber im Detail verschiedene Rechenverfahren, die von einer Skaleninvarianz des beschriebenen Systems Gebrauch machen. Die untersuchten Systeme sind dabei alle stochastischer Natur. Bei Systemen aus der Quantenfeldtheorie beruht die stochastische Natur auf Quantenfluktuationen, bei Systemen aus der klassischen Physik auf thermischen Fluktuationen, Wahrscheinlichkeiten für Verunreinigungen, oder Übergangswahrscheinlichkeiten für irgendwelcher Reaktionen. Ein anschauliches (eher mathematisches) Beispiel ist die Perkolation. In aller Regel ist das Problem als Pfadintegral vorgegeben, und die interessierenden Messgrößen sind Korrelationsfunktionen oder davon abgeleitete Größen.
Die Idee einer Renormierungsgruppen-Rechnung ist, das ursprüngliche (nicht renormierte) System entsprechend einer genau definierten Vorschrift auf sogenannte renormierte Systeme abzubilden. Bei dieser Abbildung ist immer eine andere (i. d. R. variable) Längenskala im Spiel, indem explizit Skalierungen ausgeführt werden oder/und Vertexfunktionen bei gewissen Längenskalen berechnet werden.
Falls das renormierte System einfacher ist, indem es z. B. bei einer Änderung der Längenskala einen Fixpunkt erreicht oder die Kopplungskonstanten klein werden, hat man wegen der eindeutigen Abbildung (zumindest für gewisse Längenskalen) damit auch für das eigentlich interessierende Problem viel gewonnen. Dass der Formalismus auch eine anschauliche Interpretation im Sinne von skalenabhängigen Kopplungskonstanten hat, ist essentiell und instruktiv, für die Anwendung des Formalismus selber spielt das keine Rolle.
Die Bedeutung von Renormierungsgruppen-Rechnungen liegt darin, dass sie oft nach Schema anwendbar sind und Ergebnisse liefern, wo andere Methoden nicht weiterführen. Beispielsweise liefert naive (regularisierte) Störungsrechnung in der Quantenfeldtheorie und bei kritischen Phänomenen eine divergente Störungsreihe, während die Renormierungsgruppe implizit Störungsrechnungsbeiträge aufsummiert und die Skaleninvarianz korrekt zum Ausdruck bringt.
Das Blockspin-Modell von Leo Kadanoff (1966) liefert einen anschaulichen Zugang zur RG. Gegenstand des Modells ist ein zweidimensionales Gitter von Spin -Freiheitsgraden (anstelle um Spins kann es sich auch um andere Freiheitsgrade handeln) vom Typ des Isingmodells, das heißt, es wechselwirken nur unmittelbar benachbarte Spins miteinander mit einer Kopplungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \, J . Das System werde durch eine Hamiltonfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \, H(T,J) beschrieben und habe die Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \, T .
Nun wird das Spin-Gitter in Blöcke von $ 2\times 2 $- Quadraten aufgeteilt und es werden anstelle der ursprünglichen Spins Blockspin-Variable eingeführt, indem über die Spins im Block in geeigneter Weise gemittelt wird. Es ergibt sich ein System mit einer um einen Faktor 4 kleineren Spindichte. Um ein mit dem ursprünglichen Modell vergleichbares Modell zu erhalten sind außer der Mittelung auch gewisse Reskalierungen erforderlich. Oft hat die neue Hamiltonfunktion dann die gleiche Struktur wie die alte, nur mit neuen Werten für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,T und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,J : Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad H(T,J)\to H(T',J') .
Dieser Vorgang wird wiederholt, das heißt man fasst wieder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2\times 2 der Spin-Blockvariablen durch Mittelung zusammen (das wären dann jeweils 4 Spins oder 16 Spins aus dem Ausgangsmodell) usw. Das System wird also auf einer ständig vergröbernden Skala betrachtet. Ändern sich dabei die Parameter unter RG-Transformationen nicht mehr wesentlich, spricht man von einem Fixpunkt der RG.
Im konkreten Fall des Isingmodells, ursprünglich als Modell für magnetische Systeme eingeführt (mit einer Wechselwirkung, die bei parallelen Spins einen negativen Beitrag, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): - \,J , zur Energie $ H $ liefert, bei anti-parallelen Spins einen positiven Beitrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \, J ), wirkt die durch die Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \, T gekennzeichnete Wärmebewegung den Ordnungsbestrebungen der Wechselwirkung (durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \, J charakterisiert) entgegen. Hier (und häufig auch in ähnlichen Modellen) gibt es drei Arten von Fixpunkten der RG:
(a) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,T=0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,J\to\infty . Auf großen Skalen überwiegt die Ordnung, ferromagnetische Phase.
(b) $ \,T\to \infty $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,J\to 0 . Unordnung auf großen Skalen.
(c) Ein Punkt dazwischen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,T = T_c und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,J = J_c , bei dem eine Skalenänderung die Physik des Systems nicht verändert (Skaleninvarianz wie in fraktalen Strukturen), der Punkt ist ein Fixpunkt der RG. An diesem sogenannten kritischen Punkt findet ein Phasenübergang zwischen den beiden Phasen (a), (b) statt. Im Fall des Ferromagnetismus wird er Curie-Punkt genannt.
Eine RG-Transformation im Ortsraum nach dem Schema von Kadanoff ist nur in wenigen Fällen praktikabel, und liefert genaue Ergebnisse nur dann, wenn man viele verschiedene Kopplungskonstanten berücksichtigt. Bei den anderen RG-Methoden ist der Ausgangspunkt ein Pfadintegral. D. h., die Freiheitsgrade sind kontinuierliche Felder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi , und zu berechnen ist eine Zustandssumme oder ein erzeugendes Funktional der Art
woraus man alle interessierenden Größen erhalten kann. Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S\left(\varphi,J\right) das Wirkungsintegral des Systems, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J sind die Kopplungskonstanten oder andere Systemparameter. Im Kontext der RG berechnet man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z , indem man schrittweise Freiheitsgrade mit kurzen Wellenlängen eliminiert.
Bei der RG-Methode von K.G. Wilson erfolgt dies explizit und analog zur Idee von Kadanoff, indem man die Fourierkomponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_{k} der Felder in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_{k}=\varphi_{k}^{<}+\varphi_{k}^{>} schreibt und die $ \varphi _{k}^{>} $ aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z herausintegriert. Hierbei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_{k}^{>} die Komponenten mit großen Wellenvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_{k}^{<} das Komplement. Nach der Elimination von $ \varphi ^{>} $ sind wie beim Kadanoff-Schema noch Reskalierungen auszuführen. Bei anderen RG-Methoden erfolgt die Elimination von Freiheitsgraden eher implizit (insbesondere in der Quantenfeldtheorie). Die tatsächlichen Rechnungen basieren auf der Störungsrechnung.
In jedem Fall ergibt sich nach dem Renormierungschritt ein neuer Ausdruck für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z mit einem renormierten Wirkungsintegral Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S\left(\varphi',J'\right) mit i. A. anderen Kopplungskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J' , und die Felder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi' sind Freiheitsgrade auf einer vergröberten Längenskala.
Noch anzumerken ist, dass die Bezeichnung „Renormierungsgruppe“ irreführend ist. Bei den RG-Transformationen geht Information verloren, und die Transformationen sind daher nicht invertierbar. Im mathematischen Sinn bilden die RG-Transformationen also nur eine Halbgruppe.
Die Änderung der Systemparameter bei einem Renormierungsschritt hängt davon ab, wieviele Freitsgrade eliminiert werden. Ausgedrückt durch das Verhältnis von alter und neuer Längensskala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L quantifiziert man die Größe des Renormierungsschritts durch eine dimensionslose Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ell=\ln\left(L'/L\right) . Die Änderung der Parameter wird damit zu einem Kontinuum von Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J=J\left(J_{0},\ell\right) des Parameterraums auf sich selber, dessen Fluss man durch sogenannte Betafunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta\left(J\right) beschreibt,
Die Abbildung rechts zeigt ein Beispiel mit einem zweidimensionalen Parameterraum. In der Teilchenphysik interessiert dabei der Parameterfluss bei kleiner werdender Längenskala, in den anderen Fällen der Fluss bei wachsender Längenskala.
Die physikalischen Werte der Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J definieren einen Startpunkt im Parameterraum, die Betafunktionen bestimmen die vom Punkt bei der Renormierung durchlaufene Bahn. Wichtig sind die durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta\left(J\right)=0 definierten Fixpunkte $ J=J^{*} $ des Parameter-Flusses. Solche Fixpunkte können stabil, instabil oder gemischt stabil-instabil (hyperbolisch) sein, siehe Abbildung rechts. Es kann sein, dass man einen (oder mehrere) Koordinaten des Startpunktes (physikalische Parameter, z. B. die Temperatur) adjustieren muss, um einen Fixpunkt zu erreichen. Der Fixpunkt kann dann mit dem kritischen Punkt eines kontinuierlichen Phasenübergangs identifiziert werden. Die RG erklärt auf diese Weise, was ein kritischer Punkt ist, und weshalb z. B. beim Ising-Magneten Temperatur und Magnetfeld einen bestimmten Wert haben müssen, um den kritischen Punkt zu erreichen.
Der Parameterfluss in der Nähe eines Fixpunktes resultiert aus der RG-Entwicklung von zur Wirkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S hinzugefügten Termen der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_{m}O_{m} , wo Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): O_{m} als „Operator“ bezeichnet wird (aber nur ein Funktional der Felder ist). Um die Stabilität eines Fixpunkts zu untersuchen, kann man zunächst den Parameterfluss in einer Umgebung des Fixpunkts linearisieren. Die Lösung der linearisierten Flussgleichung hat (eventuell nach einer linearen Transformation) die Form
Die Exponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y_{m} lassen sich mit kritischen Exponenten identifizieren.
Wenn $ y_{m} $ positiv ist, dann entfernt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_{m}\left(\ell\right) bei der Renormierung vom Fixpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_{m}^{*} , und man nennt den Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): O_{m} relevant. Bei negativem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y_{m} strebt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_{m}\left(\ell\right) hingegen gegen den Fixpunkt $ J_{m}^{*} $, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): O_{m} heißt irrelevant.
Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y_{m} den Wert Null hat, ändert sich der Parameter in linearer Näherung nicht, und der entsprechende Operator heißt marginal. Das Verhalten eines marginalen Operators bei der Renormierung ist erst in nichtlinearer Ordnung ersichtlich. Es kann sein, dass sich der entsprechende Parameter langsam (typischerweise logarithmisch in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ell ) dem Fixpunkt annähert oder davon entfernt. In aller Regel sind die Standard-Nichtlinearitäten (renormierbarer) Feldtheorien marginal. Die entsprechende Abhängigkeit einer Kopplungskonstante vom Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ell beschreibt man auch mit dem Terminus „laufende Kopplungskonstante“.
Bei vielen Fixpunkten ist der Parameterfluss für alle denkbaren Typen von Operatoren (Wechselwirkungen, Richtungen im Parameterraum) konvergent, mit Ausnahme einiger weniger „relevanter“ Operatoren. In diesem Fall beschreibt der Fixpunkt das ganze Kontinuum der durch den Einzugsbereich des Fixpunkts repräsentierten Systeme. Dies erklärt z. B., weshalb alle Gase an ihrem kritischen Punkt dieselben kritischen Exponenten haben, und dass dieselben Exponenten auch im Ising-Magneten auftreten. Dieses Phänomen heißt Universalität. Entsprechend definiert man eine Ising-Modell-Universalitätsklasse, und ordnet Systeme mit einem Fixpunkt der Art des Ising-Magneten dieser Universalitätsklasse zu. Ein anderes Beispiel ist die isotrope Perkolation. Hier ergeben z. B. Gitter- und Kanten-Perkolation auf Rechteck- und Dreiecksgitter exakt dieselben kritischen Exponenten, und man spricht von der Universalitätsklasse der isotropen Perkolation. Diese Unterteilung von kontinuierlichen Phasenübergängen in Universalitätsklassen ist eines der wichtigsten Ergebnisse der RG-Theorie.
Die Feldtheorien des Standard-Modells der Teilchenphysik sind ebenfalls Universalitätsklassen im RG-Sinn, mit mehreren marginalen oder irrelevanten Zusatztermen und vielen nicht universellen Konstanten.
Der Terminus „kritische Dimension“ (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_{c} ) bezeichnet die Raumdimension $ d $ (bzw. Raumzeit-Dimension), bei welcher das im Pfadintegral enthaltene Wirkungsintegral Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S (ohne relevante und irrelevante Terme) skaleninvariant ist bei geeigneter Skalierung von Feldern, Koordinaten und ggf. der Zeit (die Bestimmung der kritischen Dimension einer Feldtheorie ist eine rein algorithmische Angelegenheit, siehe Weblinks). Wenn die Raumdimension nahe bei der kritischen Dimension liegt, dann sind die Fixpunktwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda^{*} der Kopplungskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda von der Größenordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): O\left(d-d_{c}\right) , und eine RG-Rechnung basierend auf einer Störungsrechnung nach $ \lambda ^{*} $, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda\left(\ell\right) oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d-d_c ist gerechtfertigt. Die kritische Dimension der Feldtheorien (QED, QCD) des Standard-Modells der Teilchenphysik ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d=d_{c}=4 , und die RG basiert auf einer Entwicklung nach den laufenden Kopplungskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda\left(\ell\right) . Das führt nur zum Ziel solange $ \lambda \left(\ell \right) $ klein ist. In der QCD ist das der Fall bei hoher Energie (asymptotic freedom), in der QED bei nicht zu hoher Energie.
Eine Renormierung nach dem Schema von Kadanoff oder Wilson im Sinn einer schrittweisen Berechnung einer Zustandssumme ist (abgesehen von diversen technischen Schwierigkeiten) immer ausführbar. Der Begriff „Renormierbarkeit“ stammt aus der Teilchenphysik. Eine Feldtheorie heißt hier renormierbar, wenn sie (bei Parameterfluss in Richtung kleiner werdender Längenskala) nur marginale und irrelevante Terme enthält. Dies setzt voraus, dass die Dimension der Raumzeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d mit der kritischen Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_{c} der Feldtheorie übereinstimmt. Renormierbar in diesem Sinn sind die im Standardmodell der Teilchenphysik enthaltenen Feldtheorien (QCD und elektroschwache Wechselwirkung inklusive QED), nicht aber die Einstein-Hilbert-Wirkung der allgemeinen Relativitätstheorie mit kritischer Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_{c}=2 .
Die Störungsreihe einer Feldtheorie ist konvergent und damit „trivial“ bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d<d_{c} in der Teilchenphysik und bei $ d>d_{c} $ in der statistischen Physik. Man spricht dann von einer „super-renormierbaren“ Feldtheorie.
Die am weitesten verbreitete Variante der Renormierungsgruppe hat ihren Ursprung in der Quantenfeldtheorie und hat viele Anwendungen auch in anderen Bereichen. Der Ausgangspunkt ist das Wirkungsintegral für die Feldtheorie und das entsprechende Pfadintegral. Die Rechnungen erfolgen zumeist im Impulsraum und basieren auf der Störungstheorie. Verschiedene Aspekte ergeben in Kombination eine große Vielfalt. Beispiele sind
Gegenstand der Renormierungsgruppe sind fast immer Feldtheorien, d. h. Systeme welche mit Feldern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_{i}\left(x\right) und einem Wirkungsintegral $ S $ beschreibbar sind. Es interessieren Korrelationsfunktionen der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G_{i_{1},...i_{n}}\left(x,\lambda,\Lambda\right)=\left\langle \varphi_{i_{1}}\left(x_{1}\right),...,\varphi_{i_{n}} \left(x_{n}\right) \right\rangle , oder äquivalent dazu, Vertexfunktionen. Diese lassen sich mit Hilfe des Pfadintegrals
berechnen. Die Wirkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S ist ein Funktional der Felder und eine Funktion von Parametern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda und vom Cutoff-Wellenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda . Der Cutoff unterdrückt Fluktuationen von $ \varphi $ mit Wellenlängen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left|k\right|>\Lambda und ist erforderlich, um überhaupt endliche Ergebnisse zu erhalten. Andernfalls hätte man auch in einem endlichen System unendlich viele Freiheitsgrade, und das Pfadintegral wäre nicht definiert.
Bei renormierbaren Feldtheorien sind Vertexfunktionen (und Korrelationsfunktionen) als Funktionen von Wellenvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left|k\right|\ll\Lambda skaleninvariant. Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda der UV-Cutoff, z. B. die reziproke Gitterkonstante. Skaleninvarianz ist eine Symmetrie, welche sich auf alle Längenskalen erstreckt. Diese Symmetrie ist für großes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k aber nur im Limes $ \Lambda \rightarrow \infty $ realisiert. In der Quantenfeldtheorie wie auch bei klassischen kritischen Phänomenen ist primär das Verhalten bei kleinen Wellenvektoren (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left|k\right|\ll\Lambda ) von Interesse, Abhängigkeiten vom Cutoff sind quasi ein notwendiges Übel.
Zwei Feldtheorien, welche sich nur im Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda unterscheiden, sind nicht unmittelbar vergleichbar. Sie gehören zur selben Universalitätsklasse, die Vertexfunktionen unterscheiden sich aber um einen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda -abhängigen konstanten Faktor. Um die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda -Abhängigkeit loszuwerden „normiert“ man daher die Vertexfunktionen durch Multiplikation mit sogenannten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z -Faktoren und durch Auferlegung von Normierungsbedingungen bei einem kleinen Wellenvektor $ \mu $. Man verlangt zum Beispiel für die Zwei-Punkt-Vertexfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma^{\left(2\right)}\left(k,\lambda,\Lambda\right) des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi^{4} -Modells
und nennt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{R}^{\left(2\right)}\left(k,\lambda\right)=Z_{\varphi}^{2}\Gamma^{\left(2\right)}\left(k,\lambda,\Lambda\right) die „renormierte“ Vertexfunktion. Nach Multiplikation mit konstanten $ Z $ -Faktoren verbleiben auch im Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda\rightarrow\infty endliche renormierte Vertexfunktionen, welche das physikalische Verhalten beschreiben. Genaugenommen interessiert nur das Verhalten des nicht renormierten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma^{\left(2\right)} beim naturgegeben großen konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda , aber die Elimination von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda liefert letztlich ein Verständnis für Skaleninvarianz und eine neue Rechentechnik – die feldtheoretische Renormierungsgruppe.
Eine Struktur in der Vielfalt von Vertexfunktionen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z -Faktoren und Normierungsbedingungen ergibt sich, wenn man die renormierten Vertexfunktionen als Vertizes eines effektiven renormierten Wirkungsintegrals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_{R} interpretiert. Das renormierte Wirkungsintegral hat dieselbe Form wie das nicht renormierte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S , und um ein endliches Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_{R} zu erhalten, ist für jeden Term von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_{R} eine Renormierungsbedingung erforderlich. Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z -Faktoren sind mit den Potenzen der Felder in den Termen von $ S_{R} $ assoziiert. Jeder Feldtyp Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_{i} erfordert einen spezifischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z -Faktor (deren Zahl kann aber aufgrund von Symmetrien kleiner sein).
Die wesentlichen technischen Punkte lassen sich am einfachsten Beispiel verstehen. Ausgangspunkt ist die Das Wirkungsintegral des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi^4 -Modells bei der kritischen Temperatur (ohne Massenterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \propto \varphi^2 und ohne Magnetfeldterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \propto \varphi )
Als eine Summe von Monomen kann die Wirkung invariant unter einer Reskalierung der Felder, der Koordinaten, und der Kopplungskonstanten mit einem beliebigen Skalenfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b , sein. Hier ist das
Per Konvention wird als Reskalierungs-Exponent für die Koordinaten immer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [x]=-1 verwendet. Die zwei Terme von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S liefern damit zwei Gleichungen aus denen sich die Skalierungsexponenten $ [\varphi ]=1-\varepsilon /2 $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [u]=\varepsilon ergeben. Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varepsilon =d-d_c mit (oberer) kritischer Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_c=4 . Zu beachten ist, dass die Kopplungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u bei der kritischen Dimension dimensionslos ist.
Die Skaleninvarianz des Wirkungsintegrals bei der kritischen Dimension $ d_{c} $ impliziert nicht direkt eine Skaleninvarianz der physikalischen Größen, denn diese bestimmen sich aus dem Pfadintegral mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S im Exponenten. Damit das Pfadintegral einen Sinn ergibt ist eine Regularisierung erforderlich, womit implizit eine weitere Längenskala ins Spiel kommt. Das regularisierte Pfadintegral liefert die physikalischen Größen. Die naive Skaleninvarianz der Wirkung wird i. A. durch Fluktuationen modifiziert. Ein generischer Ausgangspunkt der Renormierungsgruppe ist die Annahme, dass die Skaleninvarianz in modifizierter Form asymptotisch bestehen bleibt, d. h., dass die 2- und 4-Punkt-Vertexfunktionen der effektiven Wirkung ebenfalls skaleninvariant sind, wenn auch mit modifizierten Skalenexponenten. Per Konvention schreibt man den Skalenexponenten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [\varphi] = 1 - \varepsilon /2 + \eta/2 , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta auch als kritischer Exponent bezeichnet wird.
Durch „Entfernen“ der nichttrivialen Anteile der Skalenexponenten von den Vertexfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_2 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_4 mit einem Feld-Renormierungsfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z = (\mu/\Lambda)^{\eta} erhält man die „renormierten“ Vertexfunktionen,
Die Vertexfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_4 hängt eigentlich von 3 Wellenvektoren ab, aber zum Zweck der Renormierung ist es ausreichend, eine symmetrische Situation zu betrachten, wo die drei Wellenvektoren von den Ecken eines Tetraeders zum Mittelpunkt zeigen und denselben Betrag haben (andere Konventionen unterscheiden sich nur um eine uninteressante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu -unabhängige Renormierung).
Die Störungsrechnung liefert für die Vertexfunktionen $ \Gamma _{2} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_4 Potenzreihen in der nicht renormierten dimensionslosen Kopplungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar{u} =uk^{-\varepsilon} . Diese Potenzreihen sind am kritischen Punkt, d. h. bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k \to 0 divergent und zunächst nutzlos. Der nächste Schritt ist das Aufstellen der Normierungsbedingung
Daraus bestimmt sich im Prinzip der Faktor $ Z $ als Potenzreihe in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar{u} . Der Clou der ganzen Aktion ist die Definition einer dimensionslosen renormierten Kopplungskonstante
Diese dimensionslose renormierte Kopplungskonstante ändert sich als Funktion des Wellenvektors i. d. R. nur langsam, ist oft klein und strebt u. U. gegen einen Fixpunkt. Der Trick ist daher, die Potenzreihen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar{u} zu Potenzreihen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u_R zu transformieren. D.h. man ermittelt die Umkehrfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar{u}(u_R) . Eine entscheidende Rolle spielt dann der Fluss
der renormierten Kopplungskonstante bei Änderung der Längenskala bei konstantem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u . Die Bedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta(u_R)=0 liefert ggf. den Fixpunkt der renormierten Kopplungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u_R . Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u_R und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z kennt man dann auch die physikalischen Größen $ \Gamma _{2} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_4 .
Eine funktionale Renormierungsgruppe (FRG) ist eine Methode zur Berechnung des effektiven Potentials einer Feldtheorie für eine variable Längenskala. Eine FRG berücksichtigt relevante, marginale und irrelevante Kopplungen. Eine exakte Bestimmung des effektiven Potentials ist damit allerdings i. d. R. genauso wenig möglich wie mit anderen Techniken. Jedoch erlaubt eine FRG verschiedenste Parametrisierungen und ist unabhängig von (bestenfalls asymptotisch konvergenten) Störungsreihen-Entwicklungen.
Es gibt mindestens drei FRG-Varianten, eine nach Art der Wilsonschen-Eliminations-Renormierungsgruppe (Wegner und Houghten), eine Variante mit variablem UV-Cutoff (Polchinski) und eine Variante mit einem Infrarot-Regulator (Wetterich). Am einfachsten zu handhaben ist die Variante mit IR-Regulator.
Für die FRG mit IR-Regulator lässt sich im Rahmen der Quantenfeldtheorie mit wenigen formalen Schritten eine kompakte Formel herleiten, die Ausgangspunkt für konkrete Anwendungen ist (Wetterich). Um die Schreibweise zu vereinfachen empfiehlt sich dabei die de-Witt-Schreibweise, wo das Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi ein Vektor ist, dessen Index einen Punkt im Raum und ggf. auch einen Feldindex spezifiziert. Der erste Schritt besteht darin, zur Wirkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S einen Regulator-Term
hinzuzufügen, wo die Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R von einer Wellenvektor-Skala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu abhängt (Beispiele weiter unten). Die erzeugende Funktion der zusammenhängenden Korrelationsfunktionen lautet dann
wo Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J ein externes Feld bezeichnet. Der Erwartungswert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline{\varphi}_{a}=\partial W/\partial J_{a} , und die 2-Punkt-Korrelationsfunktion ist gegeben durch
Die erzeugende Funktion der 1-Teilchen-irreduziblen Vertex-Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \widetilde{\Gamma}\left(\mu,\overline{\varphi}\right) ist nach üblichem Schema die Legendre-Transformierte
Differenzieren nach der Wellenvektor-Skala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu und Verwenden der Definition von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \widetilde{G}_{a,b} führt auf
Die Renormierungsgruppen-Differenzialgleichung folgt daraus als
wo $ \Gamma ={\widetilde {\Gamma }}-{\frac {1}{2}}{\overline {\varphi }}\cdot R\cdot {\overline {\varphi }} $ das effektive Potential ohne das künstliche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_R bezeichnet und der Propagator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \widetilde{G}=1/\widetilde{\Gamma}_{2}=1/\left(\Gamma_{2}+R\right) ebenfalls in einer Form geschrieben ist, die den künstlichen Beitrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_R explizit macht. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Tr\left(\dots\right) steht für die Spur einer Matrix.
Der Sinn und die Interpretation der FRG-Differentialgleichung ergeben sich mit der Wahl des Regulators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R , d. h. des Propagators. Typische IR-Cutoff-Funktionen (ausgedrückt im $ k $-Raum) sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R\left(\mu,k\right)=k^{2}/\left(e^{k^{2}/\mu^{2}}-1\right) oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R\left(\mu,k\right)=\left(\mu^{2}-k^{2}\right)\theta\left(\mu^{2}-k^{2}\right) . Diese Funktionen verschwinden schnell für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k\gg\mu und erreichen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k\ll\mu den Wert $ \mu ^{2} $. Dies bedeutet, dass Freiheitsgrade mit kurzen Wellenlängen keine Änderung erfahren während Freiheitsgrade mit langen Wellenlängen eine endliche Masse erhalten und unterdrückt werden. Die FRG-Differentialgleichung beschreibt bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu\rightarrow0 was geschieht, wenn man mehr und mehr Freiheitsgrade mit langen Wellenlängen hinzunimmt. Z. B. kann man auf diese Weise einen kritischen Punkt erreichen, bei dem beliebig lange Wellenlängen zu berücksichtigen sind.
Skalierungsüberlegungen gibt es in der Physik schon seit dem Altertum und an prominenter Stelle z. B. bei Galilei. Die RG tauchte zum ersten Mal 1953 in der Behandlung der Renormierung in der Quantenelektrodynamik durch E. C. G. Stueckelberg und André Petermann sowie 1954 durch Murray Gell-Mann und Francis Low auf. Die Theorie wurde von den russischen Physikern N. N. Bogoljubow und D. V. Shirkov ausgebaut, die 1959 ein Lehrbuch darüber schrieben.
Ein wirkliches physikalisches Verständnis wurde jedoch erst durch die Arbeiten von Leo Kadanoff 1966 erreicht (Blockspin-Transformation), die dann vom Nobelpreisträger (1982) Kenneth Wilson 1971 für die Behandlung sog. kritischer Phänomene in der Umgebung von kontinuierlichen Phasenübergängen und ferner 1974 zur Lösung des Kondo-Problems benutzt wurden. Er erhielt unter anderem für die erstgenannte Leistung 1982 den Nobelpreis. Auch die alte RG der Teilchenphysik wurde um 1970 von Curtis Callan und Kurt Symanzik neu formuliert. In der Teilchenphysik wurde hauptsächlich die Impulsraum-RG verwendet und ausgebaut. Sie fand auch weite Verwendung in der Festkörperphysik, war aber bei stark korrelierten Systemen nicht anwendbar. Hier war man ab den 1980er Jahren mit Ortsraum-RG-Verfahren erfolgreicher, wie der von Steven R. White (1992) eingeführten Dichtematrix-RG (density matrix RG, DMRG).