Schalldruck

Schalldruck

Schallgrößen
  • Schalldruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p
  • Schalldruckpegel $ L_{p} $
  • Schallschnelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v
  • Schallauslenkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \xi
  • Schallintensität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I
  • Schallleistung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_\text{ak}
  • Schallenergiedichte $ E $
  • Schallenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W
  • Schallfluss Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q
  • Schallimpedanz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z
  • Schallgeschwindigkeit $ c_{\text{S}} $

Der Schalldruck oder Schallwechseldruck, Formelzeichen p (engl. „pressure“ – Druck), ist in der Tontechnik und in der Akustik die wichtigste Schallfeldgröße. Die SI-Einheit des Schalldrucks ist – wie die des Luftdrucks – das Pascal mit dem Einheitenzeichen Pa. Der gemessene Effektivwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{p} des Schalldrucks geht in den in dB angegebenen Schalldruckpegel ein.

Definition

Als Schalldruck werden die Druckschwankungen eines kompressiblen Schallübertragungsmediums (üblicherweise Luft) bezeichnet, die bei der Ausbreitung von Schall auftreten. Diese Druckschwankungen werden vom Trommelfell als Sensor in Bewegungen zur Hörempfindung umgesetzt.

Der Schalldruck p ist der Wechseldruck (eine Wechselgröße), der dem statischen Druck p0 (i. d. R. dem Luftdruck) überlagert ist. Hierbei ist der Schallwechseldruck

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = \frac{F}{A} \,

mit der auf die Fläche A wirkenden Kraft F je Flächeninhalt von A.

Für den gesamten Druck pges gilt somit:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_\mathrm{ges} = p_0 + p \,

Der Schalldruck p (Schallwechseldruck) ist in der Regel um viele Größenordnungen kleiner als der statische Luftdruck. Da ein Druck mit keiner Richtungsangabe verknüpft werden kann, handelt es sich um eine skalare Größe. Der Schalldruck in Abhängigkeit von den Koordinaten im dreidimensionalen Raum ist aus mathematischer Sicht somit ein Skalarfeld.

Weiterhin ist bei sinusförmigen Signalen die Angabe als Effektivwert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_{\mathrm{eff}} = \tilde{p} = \frac {\hat p} {\sqrt 2} \quad \,

üblich. Die Schalldruckamplitude ist dagegen der Scheitelwert (Spitzenwert) des Schalldrucks.

Handelt es sich beim Schall um einen Ton, also eine harmonische Schwingung (oft auch als „Sinus-Schwingung“ bezeichnet) mit nur einer Frequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f , so gilt für die Zeitabhängigkeit des Schalldrucks:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p(t) = \hat{p} \sin (2\pi ft) = \hat{p} \sin (\omega t)\,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{p} die Schalldruckamplitude und ω die Kreisfrequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega = 2 \pi \, f \, ist.

Abstandsabhängigkeit

Der Effektivwert des Schalldrucks $ {\tilde {p}} $ verhält sich im Freifeld umgekehrt proportional zur Entfernung r von einer (punktförmigen) Schallquelle (1/r-Gesetz, Abstandsgesetz):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{p} \sim \frac{1}{r}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\tilde{p}_2} {\tilde{p}_1} = \frac{r_1}{r_2}\,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{p}_2 = \tilde{p}_{1} \frac{r_1}{r_2}\,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{p}_1\, = Schalldruck im Abstand $ r_{1}\, $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{p}_2\, = Schalldruck im Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r_2\,

(Anmerkung: Die quadratischen Schallenergiegrößen, wie z. B. die Schallintensität, nehmen bei punktförmigen Schallquellen mit 1/r2 über der Entfernung ab.) Wie man hier erkennen kann, ist zur Beurteilung der Stärke einer Schallquelle neben der Angabe des gemessenen Schalldrucks unbedingt die Angabe der Lage des Messpunkts als Abstand r von der Schallquelle notwendig.

In halliger Umgebung gilt das 1/r-Gesetz nur eingeschränkt:

  • Im Direktfeld der Schallquelle, also im Freien und wo der Direktschall D den Raumschall R überwiegt, gilt das 1/r-Gesetz.
  • Außerhalb des unmittelbaren Direktfelds, wo die Reflexionen einen Einfluss auf den Gesamtschalldruck bekommen, gilt das 1/r-Gesetz nur eingeschränkt.
  • Außerhalb des Hallradius rH, das ist die Entfernung von der Schallquelle, bei der der Direktschall D genau so stark ist wie der Raumschall R, bleibt der Schalldruck mit zunehmendem Abstand von der Schallquelle im Wesentlichen konstant, da er hier vor allem von den Reflexionen der Wände bestimmt wird.

Zusammenhang mit anderen akustischen Größen

In einer ebenen Welle ist der Schalldruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p mit den akustischen Größen Schallkennimpedanz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z , Schallleistung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_\mathrm{ak} , Schallschnelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v und Schallintensität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I folgendermaßen verknüpft:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = Z \; v = \frac{I}{v} = \sqrt{I \; Z} = \frac{P_\mathrm{ak}}{v \; A} = \sqrt{\frac{P_\mathrm{ak} \; Z}{A}} = {\xi \; Z \; \omega} = \frac{a \; Z}{\omega} = c \; \sqrt{\rho \; E} .

Hierbei ist:

Symbol Einheiten Bedeutung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p Pa Schalldruck
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f Hz Frequenz
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \xi m Schallauslenkung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c m/s Schallgeschwindigkeit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v m/s Schallschnelle
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega 1/s Kreisfrequenz
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho kg/m3 Luftdichte (Dichte des Mediums)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z = c \; \rho N·s/m3 Schallkennimpedanz, Akustische Feldimpedanz
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a m/s2 Schallbeschleunigung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I W/m2 Schallintensität
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E s/m3 Schallenergiedichte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_\mathrm{ak} W Schallleistung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A m2 Durchschallte Fläche

Tabelle: Schalldruck und Schalldruckpegel diverser Schallquellen

Schalldruck in Luft

Zum Vergleich
statischer Luftdruck auf Meereshöhe: ca. 100 kPa
Schallquelle und Situation
(Entfernung)
Schalldruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{p}
(Effektivwert)
(in Pascal)
Schalldruck-
pegel Lp
dB re 20 µPa
M1 Garand-Gewehr (1 m) 5000 168
Strahlflugzeug (30 m) 600 150
Schmerzschwelle 100 134
Gehörschäden bei kurzfristiger Einwirkung 20 ab 120
Strahlflugzeug (100 m) 6 ... 200 110 ... 140
Presslufthammer (1 m); Diskothek 2 100
Gehörschäden bei langfristiger Einwirkung
mehr als 8 Stunden täglich
0,6 ab 90
Hauptverkehrsstraße (10 m) 0,2 ... 0,6 80 ... 90
Pkw (10 m) 0,02 ... 0,2 60 ... 80
Fernseher in Zimmerlautstärke (1 m) 0,02 ca. 60
normale Unterhaltung (1 m) 2 ... 6·10−3 40 ... 50
sehr ruhiges Zimmer 2 ... 6·10−4 20 ... 30
Blätterrauschen, ruhiges Atmen 6·10−5 10
Hörschwelle bei 1 kHz 2·10−5 0

Schalldruck in Wasser

Zum Vergleich
statischer Druck in Meereshöhe an der Wasseroberfläche: ca. 100 kPa
in 100 m Wassertiefe: ca. 1100 kPa
in 5 km Wassertiefe: ca. 51100 kPa
Schallquelle und Situation
(Entfernung)
Schalldruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{p}
(in Pascal)
Schalldruck-
pegel Lp
dB re 1 µPa
militärisches Sonar (1 m) 106 240
Hörschwelle eines Tauchers bei 1 kHz 2,2·10−3 67

Literatur

  • Hans Breuer: dtv-Atlas Physik, Band 1. Mechanik, Akustik, Thermodynamik, Optik. dtv, München 1996, ISBN 3-423-03226-X
  • Heinrich Kuttruff: Akustik. Hirzel, Stuttgart 2004, ISBN 3-7776-1244-8
  • Gerhard Müller, Michael Möser: Taschenbuch der Technischen Akustik. 3. überarb. Auflage. Springer, Berlin 2003, ISBN 3-540-41242-5
  • Ivar Veit: Technische Akustik. Vogel-Verlag, Würzburg 2005, ISBN 3-8343-3013-2

Weblinks

Einzelnachweise