Das Skalarpotential, oft einfach auch nur Potential genannt, ist in der Mathematik ein – im Unterschied zum Vektorpotential – skalares Feld $ \Phi ({\vec {r}})\, $, dessen Gradient gemäß folgender Formel
ein „Gradientenfeld“ genanntes Vektorfeld $ {\vec {F}}({\vec {r}})\ $ liefert.
Skalarpotentiale bilden u. a. die mathematische Grundlage der Untersuchung konservativer Kraftfelder wie des elektrischen und des Gravitationsfelds, aber auch von wirbelfreien sogenannten Potentialströmungen.
Ein Skalarfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Phi\colon\vec r \mapsto \Phi(\vec r) ist genau dann ein Skalarpotential, wenn es in einem einfach zusammenhängenden Gebiet
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F wird daher oft auch das zugehörige Gradientenfeld genannt, das als Gradient des Skalarpotentials $ \Phi \ $ seinerseits stets folgende Bedingungen erfüllt[1]:
Es lässt sich zeigen, dass die zuletzt genannten drei Charakteristika eines Gradientenfelds einander mathematisch gleichwertig sind, das heißt allein schon die Erfüllung einer der drei Bedingungen genügt, damit auch die beiden anderen gelten.
Bildet man mit Hilfe des Laplace-Operators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta\ die Summe der zweiten partiellen Ableitungen eines Skalarpotentials
sind vom Prinzip her zwei Ergebnisse möglich:
Ausgehend davon können skalare Potentiale noch einmal wie folgt klassifiziert werden:
Die sich als Gradienten eines skalaren Potentials ergebenden Vektorfelder sind stets wirbelfrei und werden daher – im Gegensatz zu „Wirbelfeldern“ – oft unter dem Überbegriff „Quellenfelder“ zusammengefasst[4], was nicht heißt, dass sie deshalb nicht trotzdem quellenfrei sein können.
Je nachdem nämlich, ob es sich bei den zugrundeliegenden Potentialen lediglich um Lösungen einer Poisson-Gleichung oder außerdem der Laplace-Gleichung handelt, kann man auch die aus ihnen gewonnenen Gradientenfelder noch einmal wie folgt klassifizieren:
Für die Superposition beider Feldtypen schließlich lässt sich in der Regel eine sogenannte totale Potentialfunktion formulieren, die die Summe je einer partikulären und homogenen Lösung der obengenannten Differentialgleichungen ist.[4]
Das mit Abstand bekannteste Skalarpotential ist das sogen. „newtonsche Potential“
das allerdings nur im Dreidimensionalen, also für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r^2 = x^2 + y^2 + z^2 , eine die Laplace-Bedingung erfüllende harmonische Funktion ist. Umgekehrt ist das dem „newtonschen Potential“ im Zweidimensionalen vergleichbare „logarithmische Potential“[5]
ebenso wie die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{ln}\left(\frac{1}{r}\right) = -\operatorname{ln}(r) nur dort, also für $ r^{2}=x^{2}+y^{2} $, eine harmonische Funktion, im Dreidimensionalen dagegen ein gewöhnliches Potential mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta \Phi = \frac{1}{r^2} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta \Phi = -\frac{1}{r^2} . Ebenfalls nur für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb{R}^2 definierte harmonische Funktionen sind außerdem die Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Phi(x,y) = e^x \cdot \sin(y) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Phi(x,y) = e^x \cdot \cos(y) .
Der Begriff Potential in seiner heutigen mathematischen Bedeutung geht auf den französischen Mathematiker Joseph-Louis Lagrange zurück, der bei der Untersuchung des newtonschen Gravitationsgesetzes
schon 1773 feststellte, dass die Komponenten-Zerlegung der Kraft F, der eine Punktmasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_0 im Gravitationsfeld einer zweiten Punktmasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1 ausgesetzt ist, auf drei Teilkräfte Fx, Fy und Fz hinausläuft, die allesamt als partielle Ableitungen einer gemeinsamen skalaren „Stammfunktion“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U(x_0;y_0;z_0) interpretiert werden konnten[6]:
Wie zu sehen, ist die gefundene „Stammfunktion“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U(x_0;y_0;z_0) dabei für alle Punkte des Raums außer $ (x_{1}|y_{1}|z_{1}) $ definiert, und sie ist außerdem ein Maß der (negativen) potentiellen Energie von $ m_{0} $ im Kraftfeld der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1 :
Wenig später unter dem Potentialbegriff zusammengefasst, fand diese Entdeckung ihre Fortführung in den Arbeiten des englischen Mathematikers und Physikers George Green, der 1828 in seinem Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism den Begriff der Potentialfunktion prägte. In erster Linie aber war es schließlich Carl Friedrich Gauss, der 1840[6] (nach anderen Quellen bereits 1836[7]) den Begriff des Potentials und seine Theorie weiter vertiefte und popularisierte.
Der Gebrauch des Potentialbegriffs ist leider aus historischen Gründen oft uneinheitlich. So ist etwa häufig unklar, ob mit dem Wort „Potential“ nun das betreffende Skalarfeld gemeint ist, also die betreffende Ortsfunktion, oder aber einer ihrer Funktionswerte.
So darf der Begriff des Potentials in seiner mathematischen Bedeutung – als ein skalares Feld mit bestimmten, zunächst einmal rein abstrakt geforderten Eigenschaften – vor allem nicht mit dem physikalischen „Potential“-Begriff verwechselt werden, aus dem er ursprünglich hervorging.
Einem Begriff, der dort in erster Linie die Fähigkeit eines konservativen Kraftfelds bedeutet, einen ihm ausgesetzten Körper eine Arbeit verrichten zu lassen, für gewöhnlich ausgedrückt durch das Verhältnis seiner potentiellen Energie und Ladung bzw. Masse. Das aber kann sowohl heißen, dass man es in dem gegebenen Zusammenhang mit dem skalaren Feld zu tun hat, das dieses Verhältnis in Form seiner Funktionswerte wiedergibt, oder aber, dass mit dem „Potential“ die einzelnen Funktionswerte des Felds an der betreffenden Stelle selbst gemeint sind, etwa das elektrische oder das Gravitationspotential, gemessen in Volt (= J/C) bzw. J/kg.
Hinzu kommt, dass sich, was ihre mathematischen Eigenschaften angeht, auch die potentielle Energie eines Körpers in einem konservativen Kraftfeld selbst als Skalarpotential beschreiben lässt[6], ganz zu schweigen von dem nur noch mathematisch ein Potential darstellenden Geschwindigkeitspotential der Fluiddynamik.
So kann ganz allgemein (fast) jedes physikalische Potential durch ein mathematisches modelliert werden, während umgekehrt nicht jedes mathematische Potential auch eines im Sinne der Physik ist.
Ein weiteres Problem rührt aus dem Umstand, dass der Begriff „Potential…“ auch in einigen Wortbildungen verwendet wird, bei denen dadurch nicht klarer wird, ob damit nun skalare oder vektorielle Größen bzw. Felder gemeint sind, etwa in Termini wie „Vektorpotential“, „Potentialvektor“ oder „Potentialfeld“. So könnte man gerade bei letzterem annehmen, dass damit das skalare Feld des Potentials selbst gemeint ist – die überwiegende Zahl der Autoren aber benutzt diesen Ausdruck nicht dafür, sondern für das aus dem jeweiligen Potential abgeleitete Vektorfeld der Potential- bzw. Gradientvektoren[8][9].
Analog bezeichnen manche Autoren die Vektoren, aus denen sich Gradientenfelder zusammensetzen, zur besseren Abgrenzung zwischen dem Gradienten als mathematischem Operator und dem Resultat seiner Anwendung als Gradientvektoren[10], andere dagegen mit Blick auf die (skalaren) Potentiale, aus denen sie sich herleiten, als Potentialvektoren[1].
Wirbelfelder, die Rotationen eines anderen Vektorfelds sind, sind stets quellenfrei – quellenfreie Vektorfelder können daher umgekehrt immer auch als Rotation eines anderen Vektorfelds interpretiert werden, das man in diesem Fall als „Vektorpotential“ des betreffenden quellenfreien Vektorfelds bezeichnet[2].
Gemäß dem Fundamentalsatz der Vektoranalysis, auch Helmholtz-Theorem genannt, kann dabei (fast) jedes Vektorfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec H(\vec r) als Superposition zweier Komponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F(\vec r)\, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec G(\vec r) aufgefasst werden, deren erste der Gradient eines Skalarpotentials $ \Phi ({\vec {r}})\, $ ist, die zweite dagegen die Rotation eines Vektorpotentials Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec\Gamma(\vec r) :
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F(\vec r)\, ein konservatives Kraftfeld, in dem die Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F\, dem Prinzip des kleinsten Zwanges folgend stets der Richtung des maximalen Anstiegs des Potentials $ \Phi \ $ entgegengerichtet ist, gilt alternativ die Schreibweise