Als Sommersmog (auch Photosmog, Ozonsmog oder L.A.-Smog) bezeichnet man die Belastung der bodennahen Luft (Smog) durch eine hohe Konzentration von Ozon und Photooxidantien. Er tritt bei sonnigem Wetter auf und entsteht durch Stickstoffoxide und Kohlenwasserstoffe in Verbindung mit der UV-Strahlung der Sonne. Dieser Bildungsmechanismus wurde bereits in den 1950er-Jahren als Ursache des sogenannten Los-Angeles-Smogs identifiziert.[1] Stickstoffoxide und Kohlenwasserstoffe werden zum Beispiel von Verbrennungsmotoren und Heizkraftwerken freigesetzt. Ozon greift die Atmungsorgane an und schädigt Pflanzen und Tiere. Die Ozonbelastung der Umwelt wird durch Luft-Messstationen ermittelt und regelmäßig in Belastungskarten dargestellt und veröffentlicht.
Hauptkomponente des photochemischen Smogs ist das Ozon, eines der stärksten Oxidationsmittel überhaupt. Es macht bis zu 90 Prozent der Photooxidantien aus. Daneben liegt ein komplexes Gemisch verschiedenster Reizstoffe vor, unter anderem Peroxiacetylnitrat, Peroxibenzoylnitrat, Acrolein und Formaldehyd. Neben kurzlebigen, hochreaktiven Radikalen kommen auch stabile Produkte des oxidativen Abbaus organischer Verbindungen vor. Diese liegen allerdings in wesentlich geringeren Konzentrationen als das Ozon vor und sind daher von geringerer Bedeutung.[2]
Das bodennahe Ozon entsteht unter Mitwirkung von Stickstoffoxiden und wird durch die Sonnenstrahlung beeinflusst. Stickstoffdioxid wird durch UV-Strahlung in Stickstoffmonoxid und ein Sauerstoffatom gespalten. Dieser atomare Sauerstoff verbindet sich mit einem Sauerstoff-Molekül zu Ozon.
Gleichzeitig baut Stickstoffmonoxid (NO) Ozon unter Bildung von Stickstoffdioxid und Sauerstoff wieder ab:
Die Ozonkonzentration c(O3) ist also abhängig von der Stickstoffdioxidkonzentration, der Stickstoffmonoxidkonzentration und der Strahlungsintensität:
Mit K als Gleichgewichtskonstante.
Die Bildung von Ozon wird außerdem durch Kohlenwasserstoffe begünstigt, da diese unter Sonneneinwirkung Stickstoffmonoxid zu Stickstoffdioxid umwandeln:
O3 + UV-Strahlung → O2 + •O•
•O• + H2O → 2HO•
HO• + R-CH3 → R-CH2• + H2O
R-CH2• + O2 → R-CH2O-O•
R-CH2O-O• + NO → R-CH2O• + NO2
R-CH2O• + O2 → R-CHO + HO-O•
HO-O• + NO → NO2 + •OH
Das OH-Radikal wirkt also katalytisch und wird nicht verbraucht. In der Gesamtbilanz ergibt sich:
R-CH3 + 2O2 + 2NO → RCHO + 2NO2 + H2O
Hauptverursacher der ozonbildenden Stickoxide und Kohlenwasserstoffe sind Verkehr (Verbrennungsmotoren), Industrie (Kraftwerke), Haushalte (Heizungsanlagen) und lösungsmittelhaltige Produkte (Lacke).[3]
Die beispielsweise von einem Fahrzeug mit Verbrennungsmotor emittierten Abgase tragen mit den unterschiedlichen Reaktivitäten ihrer Bestandteile (VOC) zur Ozonbildung in der bodennahen Troposphäre bei. Dabei haben insbesondere unverbrannte Kohlenwasserstoffe eine hohe Reaktionsfreudigkeit mit HO-Radikalen und dementsprechend ein hohes Ozonbildungspotential. Das Bundesimmissionsschutzgesetz nennt solche Stoffe „Ozonvorläuferstoffe“ und empfiehlt in die Überwachung von 27 chemischen Verbindungen, darunter Alkane, Alkene, substituierte Benzolverbindungen und Formaldehyd (39. BImschV, Teil 8, Anlage 10, (B)).[4] Maßstab für die Bewertung des Ozonbildungspotentials ist eine Anfang der 90er in den USA entwickelte Methode, bei der im Rahmen des gesetzlich vorgeschriebenen Fahrzyklustests (z.B. US-FTP) die Abgasbestandteile einzeln erfasst und bewertet werden.
In Kalifornien wird dieses Verfahren inzwischen bei der Zertifizierung neuer auf dem Markt zugelassener Fahrzeuge – insbesondere bei solchen mit reformulierten und alternativen Kraftstoffen – herangezogen. Dies erfolgt mit Hilfe der MIR-Skala (maximum incremental reactivity), welche die Betrachtung relativer Ozonbildungspotentiale unter bestimmten atmosphärischen Bedingungen ermöglicht. MIR-Faktoren wurden mittlerweile für etwa 200 Abgaskomponenten empirisch ermittelt. Komponenten mit den höchsten Reaktivitäten sind einige Olefine (MIR = 8–11 gO3/gVOC), einige Aromaten (7–9 gO3/gVOC) sowie einige Oxigenate (Aldehyde mit 5–7 gO3/gVOC); die niedrigste Reaktivität hat Methan mit 0,015 gO3/gVOC.
Fahrzeugversuche haben Folgendes ergeben:
Ozon dringt als Reizgas tief in die Lunge ein und kann Entzündungen hervorrufen. Je nach Dauer der Belastung und der Konzentration gibt es gesundheitliche Auswirkungen wie Husten, Augenreizung, Kopfschmerzen oder Lungenfunktionsstörungen. Nach Empfehlungen von Ärzten sollten körperliche Anstrengungen bei hohen Ozonwerten vermieden werden.
Nach der 3. EU Richtlinie 2002/3/EG für „Grenzwerte zum Schutze der Gesundheit“ (zum 11. Juni 2010 abgelöst durch die neue Luftqualitätsrichtlinie 2008/50/EG) gilt:
Individuell hilft (kurzfristig) die Vermeidung durch Aufsuchen geschlossener Räume oder das Verlassen belasteter Gegenden. Eine langfristige Verminderung gelingt nur auf kollektiver Ebene. Da das Wetter als einer der Auslöser als weitgehend unbeeinflussbar gesehen wird, zielen die Maßnahmen zur Verminderung des Sommersmogs auf die Verminderung von Stickoxiden und flüchtigen Kohlenwasserstoffen ab. Da diese durch Verkehr, private Feuerungsanlagen und Industrie / Gewerbe verursacht werden, helfen (kurzfristig) Anlagenabschaltung und Verkehrsvermeidung. Langfristig sind die Nachrüstung und/oder der Austausch von Anlagen und Fahrzeugen erforderlich.[5][6]
Nach Sonnenuntergang kommt die Neubildung von Ozon zum Erliegen. In verkehrsreichen Regionen reagiert das vorhandene Ozon mit Stickstoffmonoxid und die Ozonkonzentration geht rasch zurück. In ländlichen Gebieten sinkt der Ozongehalt der Luft in der Nacht nur wenig.[2] Im Allgemeinen sind die Ozonkonzentrationen morgens am niedrigsten.