Stationäre Strömung

Stationäre Strömung

Eine stationäre Strömung liegt vor, wenn die vektorielle Strömungsgeschwindigkeit an jedem Ort zeitlich gleich bleibt. Dann gilt an jedem Ort:

$ {\frac {{\text{d}}{\vec {v}}}{{\text{d}}t}}=0 $

mit

  • $ {\vec {v}} $ die Strömungsgeschwindigkeit
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t die Zeit.

Von Ort zu Ort kann Strömungsgeschwindigkeit durchaus variieren. In diesem Fall beschreibt man das System durch ein Geschwindigkeitsfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec v(\vec r) .[1] In stationärer Strömung sind Bahn- und Stromlinien gleich; nur dann bewegen sich die Teilchen auf den zeitlich gleichbleibenden Stromlinien wie auf festen Gleisen.[2]

Stationär gleichförmige Strömung

Fließgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v und Fließhöhe $ h $ unterliegen keiner örtlichen Änderung entlang einer Stromlinie, von Stromlinie zu Stromlinie können sie jedoch variieren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\text{d}v}{\text{d}x} = 0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\text{d}h}{\text{d}x} = 0

Stationär ungleichförmige Strömung

Fließgeschwindigkeit und Fließhöhe unterliegen örtlichen Änderungen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\text{d}v}{\text{d}x}\neq0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac {\text{d}h}{\text{d}x}\neq0

Einzelnachweise

  1. Wolfgang Demtröder: Experimentalphysik. Band 1: Mechanik und Wärme. 4., neu bearbeitete und aktualisierte Auflage. Springer Spektrum, Berlin 2006, ISBN 3-540-26034-X, S. 225–226.
  2. Karl Wieghardt: Theoretische Strömungslehre. Universitätsverlag Göttingen, Göttingen 2005, ISBN 3-938616-33-4., S. 19