Zustandsgleichung von Peng-Robinson

Zustandsgleichung von Peng-Robinson

Die Zustandsgleichung von Peng-Robinson[1] ist eine Zustandsgleichung für reale Gase. Sie lautet:

$ p={\frac {RT}{V_{\mathrm {m} }-b}}-{\frac {a\alpha }{V_{\mathrm {m} }^{2}+2bV_{\mathrm {m} }-b^{2}}} $
$ a={\frac {0{,}457235\cdot R^{2}T_{\mathrm {c} }^{2}}{p_{\mathrm {c} }}} $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b = \frac{0{,}077796 \cdot RT_\mathrm c}{p_\mathrm c}

Die einzelnen Formelzeichen stehen für folgende Größen:

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_\mathrm mmolares Volumen
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): TTemperatur
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_\mathrm ckritische Temperatur
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): pDruck
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_\mathrm c – kritischer Druck
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R – universelle Gaskonstante
  • $ a $ – Kohäsionsdruck
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b – Kovolumen

Diese 1976 aufgestellte Gleichung enthält wie jene von Redlich-Kwong-Soave einen zusätzlichen Korrespondenzfaktor und stellt eine erhebliche Verbesserung gegenüber der Van-der-Waals-Gleichung dar. Sie beschreibt wie diese sowohl Gasphase als auch Flüssigphase mit demselben Parametersatz. Mit dem Maxwell-Kriterium ist zudem auch das Zweiphasengebiet und die Dampfdruckkurve berechenbar.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = \left(1 + \left(0{,}37464 + 1{,}54226\,\omega - 0{,}26992\,\omega^2\right) \left(1-\sqrt{T_\mathrm{r}}\right)\right)^2
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_\mathrm r – reduzierte Temperatur
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omegaazentrischer Faktor

Für einen azentrischen Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega > 0{,}49 :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = \left(1 + \left(0{,}379642 + \left(1{,}48503 - \left(1{,}164423 - 1{,}016666\,\omega\right)\,\omega\right)\,\omega\right) \left(1-\sqrt{T_\mathrm{r}}\right)\right)^2

Literatur

  1. D.-Y. Peng und D.P. Robinson: A New Two-Constant Equation of State. In: Ind. Eng. Chem. Fundam. 15(1), S. 59–64, 1976