imported>Sprachpfleger K (Adjektiv kleingeschrieben. Einen überschüssigen unbestimmten Artikel entfernt. Komma.) |
imported>Aka K (→Quellen und Literatur: https, Kleinkram) |
||
Zeile 1: | Zeile 1: | ||
Der '''Kozai-Effekt''', auch '''Kozai-Mechanismus''' oder '''Kozai-Resonanz''' genannt, beschreibt in der [[Himmelsmechanik]] eine [[Periode (Physik)|periodische]] [[Bahnstörung]], die eine Änderung der [[Exzentrizität (Astronomie)|Exzentrizität]] und der [[Bahnneigung]] (Inklination) des gestörten Objektes bewirkt. Der Effekt ist benannt nach [[Yoshihide Kozai]] ({{lang|ja-Hani|古在 由秀}}, ''Kozai Yoshihide''), der ihn 1962 bei der Analyse von [[Asteroid]]en<nowiki/>bahnen entdeckte. | Der '''Kozai-Effekt''', auch '''Kozai-Mechanismus''' oder '''Kozai-Resonanz''' genannt, beschreibt in der [[Himmelsmechanik]] eine [[Periode (Physik)|periodische]] [[Bahnstörung]], die eine Änderung der [[Exzentrizität (Astronomie)|Exzentrizität]] und der [[Bahnneigung]] (Inklination) des gestörten Objektes bewirkt. Der Effekt ist benannt nach [[Yoshihide Kozai]] ({{lang|ja-Hani|古在 由秀}}, ''Kozai Yoshihide''), der ihn 1962 bei der Analyse von [[Asteroid]]en<nowiki />bahnen entdeckte. Er wird nach [[Hugo von Zeipel]], der ihn bereits 1910 behandelte und [[Michail Lwowitsch Lidow]], der ihn parallel zu Kozai in der Sowjetunion auch entdeckte, ebenfalls '''von Zeipel-Lidov-Kozai-Effekt''', '''Lidow-Kozai-Effekt''' oder '''Kozai-Lidow-Effekt''' genannt. | ||
== Auswirkungen und Bedeutung == | == Auswirkungen und Bedeutung == | ||
Zeile 13: | Zeile 13: | ||
== Erklärung == | == Erklärung == | ||
Man betrachtet ein Dreikörpersystem, das aus einem | Man betrachtet ein Dreikörpersystem, das aus einem Zentralkörper (z. B. Sonne), einem diesen umlaufenden relativ großen Körper (z. B. Planet) und einem kleinen Körper (z. B. Asteroid) besteht, der ebenfalls den Zentralkörper umläuft. Der kleine Körper, der auf einer [[elliptisch]]en Bahn mit einer Inklination <math>i</math> relativ zur Bahn des Planeten und mit einer Exzentrizität <math>e</math> um den Zentralkörper läuft, besitzt [[Bahnelemente]], die durch den großen umlaufenden Körper [[Trend (Statistik)#Säkulare Trends in der Astronomie|säkular]] gestört werden. Im [[Störungstheorie (Klassische Physik)|störungstheoretischen]] Ansatz ist der folgende Wert zeitlich konstant: | ||
:<math>\Theta := (1-e^2) \cos^2 i = \text{konst.}</math> | :<math>\Theta := (1-e^2) \cos^2 i = \text{konst.}</math> | ||
Diese [[Erhaltungsgröße|Konstante der Bewegung]] ermöglicht eine Austauschbeziehung zwischen Inklination und Exzentrizität: sinkt die Inklination, so steigt die Exzentrizität und umgekehrt. Nahezu kreisförmige Bahnen mit hoher Inklination können also zu sehr exzentrischen Bahnen mit niedriger Inklination verändert werden. | Diese [[Erhaltungsgröße|Konstante der Bewegung]] ermöglicht eine Austauschbeziehung zwischen Inklination und Exzentrizität: sinkt die Inklination, so steigt die Exzentrizität und umgekehrt. Nahezu kreisförmige Bahnen mit hoher Inklination können also zu sehr exzentrischen Bahnen mit niedriger Inklination verändert werden. | ||
* Ist die anfängliche Inklination groß genug (d. h. mindestens so groß wie der Kozai-Winkel, s.u.), dann ergibt sich eine Kozai-[[Bahnresonanz|Resonanz]], d. h. ein resonanter Austausch bzw. eine periodische, gegenläufige Schwankung von Inklination und Exzentrizität zwischen minimalen und maximalen Werten. Gleichzeitig kommt es zu einer [[Libration]] des [[Perizentrum]]s, d. h., das Argument des Perizentrums [[Schwingung|oszilliert]] um einen konstanten Wert. | * Ist die anfängliche Inklination groß genug (d. h. mindestens so groß wie der Kozai-Winkel, s. u.), dann ergibt sich eine Kozai-[[Bahnresonanz|Resonanz]], d. h. ein resonanter Austausch bzw. eine periodische, gegenläufige Schwankung von Inklination und Exzentrizität zwischen minimalen und maximalen Werten. Gleichzeitig kommt es zu einer [[Libration]] des [[Perizentrum]]s, d. h., das Argument des Perizentrums [[Schwingung|oszilliert]] um einen konstanten Wert. | ||
* Sind die Inklination und Exzentrizität des kleinen Körpers jedoch recht klein, so erhält man als Ergebnis einer solchen Störung keinen resonanten Austausch zwischen Exzentrizität und Inklination, sondern nur ein säkulares Fortschreiten des Arguments des Perizentrums, d. h. eine [[Periheldrehung]]. | * Sind die Inklination und Exzentrizität des kleinen Körpers jedoch recht klein, so erhält man als Ergebnis einer solchen Störung keinen resonanten Austausch zwischen Exzentrizität und Inklination, sondern nur ein säkulares Fortschreiten des Arguments des Perizentrums, d. h. eine [[Periheldrehung]]. | ||
Zeile 32: | Zeile 32: | ||
Befindet sich der störende große Körper näher am [[Umlaufbahn|Orbit]] des kleinen Körpers, so sinkt der Kozai-Winkel und entsprechend steigt der Grenzwert <math>\Theta_0</math>. | Befindet sich der störende große Körper näher am [[Umlaufbahn|Orbit]] des kleinen Körpers, so sinkt der Kozai-Winkel und entsprechend steigt der Grenzwert <math>\Theta_0</math>. | ||
Für [[ | Für [[Rechtläufig und rückläufig|retrograd]], d. h. „rückwärts“ um den Zentralkörper laufende [[Satellit (Astronomie)|Satelliten]] liegen die Inklinationswerte zwischen 90° und 270°. In diesem Fall ist der Kozai-Winkel ein Maximalwert und liegt für weit entfernte [[Störkörper#Andere Bedeutungen des Begriffs „Störkörper“|Störkörper]] bei <math>180^\circ - 39{,}2^\circ = 140{,}8^\circ</math>. | ||
<!--Physikalisch steht der Effekt mit dem [[Drehimpuls]]transfer in Verbindung. Der Ausdruck „erhalten“ steht dabei für die [[Normalkomponente]] des Drehimpulses (siehe auch [[Jacobi-Integral]] und [[Tisserandparameter]]).--><!--unverständlich--> | <!--Physikalisch steht der Effekt mit dem [[Drehimpuls]]transfer in Verbindung. Der Ausdruck „erhalten“ steht dabei für die [[Normalkomponente]] des Drehimpulses (siehe auch [[Jacobi-Integral]] und [[Tisserandparameter]]).--><!--unverständlich--> | ||
== Quellen und Literatur == | == Quellen und Literatur == | ||
<references/> | <references /> | ||
*Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity, ''[[Astronomical Journal]]'' 67, 591 (1962) [ | * Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity, ''[[Astronomical Journal]]'' 67, 591 (1962) [https://ui.adsabs.harvard.edu/abs/1962AJ.....67..591K ADS] | ||
*C. Murray and S. Dermott ''Solar System Dynamics'', Cambridge University Press, ISBN 0-521-57597-4 | * C. Murray and S. Dermott ''Solar System Dynamics'', Cambridge University Press, ISBN 0-521-57597-4 | ||
* Innanen et al. ''The Kozai Mechanism and the stability of planetary orbits in binary star systems'', The Astronomical Journal,'''113''' (1997). | * Innanen et al. ''The Kozai Mechanism and the stability of planetary orbits in binary star systems'', The Astronomical Journal,'''113''' (1997). | ||
*{{Literatur|Autor=Benjamin J. Shappe, Todd A. Thompson|Titel=The Mass-Loss induced eccentric Kozai Mechanism: A new Channel for the Production of Close Compact Object-Stellar Binaries.|Sammelwerk=Astrophysics. Solar and Stellar Astrophysics| | * {{Literatur |Autor=Benjamin J. Shappe, Todd A. Thompson |Titel=The Mass-Loss induced eccentric Kozai Mechanism: A new Channel for the Production of Close Compact Object-Stellar Binaries. |Sammelwerk=Astrophysics. Solar and Stellar Astrophysics |Datum=2012 |arXiv=1204.1053v1}} | ||
* {{Literatur |Autor=Takashi Ito, Katsuhito Ohtsuka |Titel=The Lidov–Kozai Oscillation and Hugo von Zeipel |Datum=2019-11 |arXiv=1911.03984}} | |||
[[Kategorie:Himmelsmechanik]] | [[Kategorie:Himmelsmechanik]] |
Der Kozai-Effekt, auch Kozai-Mechanismus oder Kozai-Resonanz genannt, beschreibt in der Himmelsmechanik eine periodische Bahnstörung, die eine Änderung der Exzentrizität und der Bahnneigung (Inklination) des gestörten Objektes bewirkt. Der Effekt ist benannt nach Yoshihide Kozai ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), Kozai Yoshihide), der ihn 1962 bei der Analyse von Asteroidenbahnen entdeckte. Er wird nach Hugo von Zeipel, der ihn bereits 1910 behandelte und Michail Lwowitsch Lidow, der ihn parallel zu Kozai in der Sowjetunion auch entdeckte, ebenfalls von Zeipel-Lidov-Kozai-Effekt, Lidow-Kozai-Effekt oder Kozai-Lidow-Effekt genannt.
Die Kozai-Resonanz führt zu Einschränkungen der möglichen Bahnen in einem System, zum Beispiel:
Der Kozai-Effekt gilt daher als ein bedeutender Faktor bei der Entstehung der Bahnen einiger Körper im Sonnensystem (irreguläre Satelliten der Planeten, transneptunische Objekte). Er wird auch herangezogen, um folgende Beobachtungen zu erklären:
Da eine Vergrößerung der Exzentrizität bei gleich groß bleibender großer Bahnhalbachse dazu führt, dass die Periapsis der Bahn verkleinert wird, kann der Kozai-Mechanismus auch dazu führen, dass die Bahnen von Kometen im Laufe der Zeit so geändert werden, dass sie in die Sonne stürzen.
Man betrachtet ein Dreikörpersystem, das aus einem Zentralkörper (z. B. Sonne), einem diesen umlaufenden relativ großen Körper (z. B. Planet) und einem kleinen Körper (z. B. Asteroid) besteht, der ebenfalls den Zentralkörper umläuft. Der kleine Körper, der auf einer elliptischen Bahn mit einer Inklination $ i $ relativ zur Bahn des Planeten und mit einer Exzentrizität $ e $ um den Zentralkörper läuft, besitzt Bahnelemente, die durch den großen umlaufenden Körper säkular gestört werden. Im störungstheoretischen Ansatz ist der folgende Wert zeitlich konstant:
Diese Konstante der Bewegung ermöglicht eine Austauschbeziehung zwischen Inklination und Exzentrizität: sinkt die Inklination, so steigt die Exzentrizität und umgekehrt. Nahezu kreisförmige Bahnen mit hoher Inklination können also zu sehr exzentrischen Bahnen mit niedriger Inklination verändert werden.
Der Kozai-Winkel $ i_{0} $, also der für eine Kozai-Resonanz minimal erforderliche anfängliche Inklinationswinkel bei zunächst fast kreisförmiger Bahn ($ e=0 $), hängt ab vom Abstand des störenden Planeten vom kleinen Körper. Ist dieser Abstand sehr groß, so findet man:
Der Übergang zwischen Periheldrehung und Kozai-Effekt findet also statt bei einem Wert für die Konstante der Bewegung von maximal
Befindet sich der störende große Körper näher am Orbit des kleinen Körpers, so sinkt der Kozai-Winkel und entsprechend steigt der Grenzwert $ \Theta _{0} $.
Für retrograd, d. h. „rückwärts“ um den Zentralkörper laufende Satelliten liegen die Inklinationswerte zwischen 90° und 270°. In diesem Fall ist der Kozai-Winkel ein Maximalwert und liegt für weit entfernte Störkörper bei $ 180^{\circ }-39{,}2^{\circ }=140{,}8^{\circ } $.