Rätselhafter Radioausbruch erhellt den ruhigen Halo einer Galaxie
Physik-News vom 26.09.2019
Astronomen haben mit dem Very Large Telescope der ESO zum ersten Mal beobachtet, dass ein schneller Radioausbruch durch einen galaktischen Halo streifte. Mit einer Dauer von weniger als einer Millisekunde kam diese rätselhafte Explosion kosmischer Radiowellen fast ungestört durch, was darauf hindeutet, dass der Halo eine überraschend geringe Dichte und ein schwaches Magnetfeld aufweist. Diese neue Technik könnte verwendet werden, um die schwer fassbaren Halos anderer Galaxien zu erforschen.
Indem sie ein kosmisches Rätsel benutzten, um ein anderes zu erforschen, analysierten Astronomen das Signal eines schnellen Radioausbruchs, um Aufschluss über das diffuse Gas im Halo einer massereichen Galaxie zu geben [1]. Im November 2018 lokalisierte das Australian Square Kilometre Array Pathfinder (ASKAP) Radioteleskop einen schnellen Radioburst, genannt FRB 181112. Nachfolgende Beobachtungen mit dem Very Large Telescope (VLT) der ESO und anderen Teleskopen ergaben, dass die Radiopulse auf dem Weg zur Erde durch den Halo einer gigantischen Galaxie gegangen sind. Dieser Befund ermöglichte es Astronomen, das Radiosignal nach Hinweisen auf die Art des Halogases zu analysieren.
Publikation:
J. Xavier Prochaska et al.
The low density and magnetization of a massivegalaxy halo exposed by a fast radio burst
Science 26 Sep 2019: eaay0073
„Das Signal des schnellen Radioausbruchs deckte die Beschaffenheit des Magnetfeldes um die Galaxie und die Struktur des Halogases auf. Die Studie erweist sich als eine neue und zukunftsweisende Technik zur Erforschung der Eigenschaften von Galaxienhalos“, sagt J. Xavier Prochaska, Professor für Astronomie und Astrophysik an der University of California Santa Cruz und Hauptautor eines Aufsatzes, der die heute in der Zeitschrift Science veröffentlichten neuen Erkenntnisse vorstellt.
Astronomen wissen immer noch nicht, was schnelle Radioausbrüche verursacht. Erst kürzlich konnten sie einige dieser sehr kurzen, sehr hellen Radiosignale bis in die Galaxien zurückverfolgen, aus denen sie stammen. „Als wir die Radio- und optischen Bilder überlagerten, konnten wir sofort sehen, dass der schnelle Radioburst den Halo dieser zufälligen Vordergrundgalaxie durchdrang. Zum ersten Mal hatten wir eine direkte Möglichkeit, die ansonsten unsichtbare Materie um diese Galaxie herum zu untersuchen“, erzählt Koautorin Cherie Day, Doktorandin an der Swinburne University of Technology, Australien.
Ein galaktischer Halo enthält sowohl dunkle als auch gewöhnliche oder baryonische Materie, die hauptsächlich in Form von heißem ionisiertem Gas vorliegt. Während der leuchtende Teil einer massereichen Galaxie etwa 30 000 Lichtjahre umfassen kann, ist ihr etwa kugelförmiger Halo im Durchmesser zehnmal größer. Halogas treibt die Sternentstehung an, wenn sie in Richtung Zentrum der Galaxie fällt, während andere Prozesse, wie z.B. Supernova-Explosionen, Material aus den sternbildenden Regionen in den galaktischen Halo ausstoßen können. Ein Grund, warum Astronomen das Halogas untersuchen wollen, ist das bessere Verständnis dieser Auswurfprozesse, die die Sternbildung unterbinden können.
„Der Halo dieser Galaxie ist überraschend ruhig“, sagt Prochaska. „Das Radiosignal wurde von der Galaxie weitgehend unbeeinflusst, was im krassen Gegensatz zu dem steht, was frühere Modelle im Falle des Ausbruchs vorhergesagt hatten.“
Das Signal von FRB 181112 bestand aus einigen wenigen Impulsen, die jeweils weniger als 40 Mikrosekunden dauerten (10 000 mal kürzer als ein Augenzwinkern). Die kurze Dauer der Impulse setzt der Dichte des Halogases eine Obergrenze, da der Durchgang durch ein dichteres Medium die Dauer des Radiosignals verlängern würde. Die Forscher berechneten, dass die Dichte des Halogases weniger als 0,1 Atome pro Kubikzentimeter betragen muss (was mehreren hundert Atomen in einem Volumen von der Größe eines Kinderballons entspricht) [2].
„Wie die schimmernde Luft an einem heißen Sommertag sollte die dünne Atmosphäre in dieser riesigen Galaxie das Signal des schnellen Radioausbruchs verzerren. Stattdessen erhielten wir einen Puls, der so unverfälscht und scharf war, dass es überhaupt keine Signatur dieses Gases gab“, erklärt Co-Autor Jean-Pierre Macquart, Astronom am International Center for Radio Astronomy Research an der Curtin University, Australien.
Die Studie fand keine Hinweise auf kalte turbulente Wolken oder kleine dichte Klumpen von kühlem Halogas. Das schnelle Radioburstsignal lieferte auch Informationen über das Magnetfeld im Halo, das sehr schwach ist – eine Milliarde Mal schwächer als das eines Kühlschrankmagneten.
An dieser Stelle, mit Ergebnissen von nur einem galaktischen Halo, können die Forscher nicht sagen, ob die von ihnen gemessene niedrige Dichte und geringe Magnetfeldstärke ungewöhnlich sind oder ob frühere Studien über galaktische Halos diese Eigenschaften überschätzt haben. Prochaska sagte, dass er erwartet, dass ASKAP und andere Radioteleskope schnelle Radioausbrüche verwenden werden, um viele weitere galaktische Halos zu untersuchen und ihre Eigenschaften zu ergründen.
„Diese Galaxie könnte etwas Besonderes sein“, gibt er zu bedenken. „Wir müssen schnelle Radiopulse verwenden, um Dutzende oder Hunderte von Galaxien über eine Reihe von Massen und Altersgruppen zu untersuchen, um die gesamte Population zu beurteilen.“ Optische Teleskope wie das VLT der ESO spielen eine wichtige Rolle, indem sie zeigen, wie weit die Galaxie, in der jeder Burst stattfand, entfernt ist und ob der Burst durch den Halo einer Galaxie im Vordergrund gegangen wäre.
Diese Newsmeldung wurde via Informationsdienst Wissenschaft erstellt.