Auswirkung von Aerosolpartikeln auf Wolken und Klima besser erfasst

Auswirkung von Aerosolpartikeln auf Wolken und Klima besser erfasst

Physik-News vom 22.11.2023
 

Weltweite Messungen und Modellrechnungen zeigen, dass komplexer Zusammenhang zwischen Chemie und Klimaeffekten von Aerosolpartikeln durch einfache Formel gut erfasst wird.

Wie stark Aerosolpartikel das Klima beeinflussen, hängt davon ab, wieviel Wasser die Partikel in der Atmosphäre aufnehmen können. Die Fähigkeit zur Wasseraufnahme wird Hygroskopizität (K) genannt und hängt wiederum von weiteren Faktoren ab – insbesondere von der Größe und chemischen Zusammensetzung der Partikel, welche hoch variabel und komplex sein kann.


Durch die Auswertung von Langzeitmessdaten wie beispielsweise von der ATTO Forschungsstation im brasilianischen Regenwald konnte das Forschungsteam um Mira und Christopher Pöhlker einen komplexen Zusammenhang auf eine einfache Formel reduzieren.

Publikation:


Pöhlker, M.L., Pöhlker, C., Quaas, J. et al.
Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing
Nat Commun 14, 6139 (2023)

DOI: 10.1038/s41467-023-41695-8



Durch umfangreiche Untersuchungen konnte ein internationales Forschungsteam unter Leitung des Max-Planck-Instituts für Chemie (MPIC) und des Leibniz-Instituts für Troposphärenforschung (TROPOS) den Zusammenhang zwischen chemischer Zusammensetzung und Wasseraufnahme von Aerosolpartikeln auf eine einfache lineare Formel reduzieren. In einer Studie zeigten sie, dass die Hygroskopizität global gemittelt im Wesentlichen durch den Anteil organischer und anorganischer Stoffe an der Aerosolzusammensetzung bestimmt wird.



Die Hygroskopizität von Aerosolpartikeln ist ein wichtiger Faktor für den Effekt von Aerosolpartikeln auf das Klima und somit auch für die Vorhersage von Klimaänderungen durch globale Klimamodelle. „Die Wasseraufnahme hängt von der Zusammensetzung der Aerosolpartikel ab, die in der Atmosphäre stark variieren kann. Wir konnten in unserer Studie jedoch zeigen, dass man für die Berücksichtigung der Hygroskopizität in Klimamodellen vereinfachte Annahmen treffen kann“, erläutert Mira Pöhlker. Sie leitet am TROPOS die Abteilung „Atmosphärische Mikrophysik“ und ist Professorin an der Universität Leipzig. Dies sei die erste Studie, die anhand von Messergebnissen aus der ganzen Welt zeige, dass eine einfache lineare Formel verwendet werden kann, ohne große Unsicherheit in Klimamodelle zu bringen, resümiert die Aerosol- und Wolkenforscherin.

Dazu wertete das Team um Mira Pöhlker Daten aus 16 Messkampagnen zwischen 2004 und 2020 aus, bei denen die Hygroskopizität mittels Wolkenkondensationskeimmessungen und die chemische Zusammensatzung der Partikel mittels Aerosol-Massenspektrometrie (AMS) bestimmt wurde. Diese umfangreichen Daten deckten verschiedenste Regionen und Klimazonen der Erde ab: vom tropischen Regenwald am Amazonas über Großstadtregionen mit starker Luftverschmutzung in Asien bis hin zum borealen Nadelwald am Polarkreis in Europa.

Die Auswertung dieser Datensätze ergab: Die effektive Aerosol-Hygroskopizität (κ) kann aus den Massenanteilen organischer Stoffe (ϵorg) und anorganischer Ionen (ϵinorg) durch eine einfache, lineare Formel (κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg) abgeleitet werden. „Trotz der chemischen Komplexität der organischen Materie wird ihre Hygroskopizität durch die einfache Formel gut erfasst“, erläutert Christopher Pöhlker, Gruppenleiter am Max-Planck-Institut für Chemie und Co-Autor der Studie. Im globalen Durchschnitt liege die Hygroskopizität für organische Partikelanteile bei κorg=0,12 ± 0,02 und für anorganischen Ionen bei κinorg = 0,63 ± 0,01.

Effekt der neuen Formel auf Klimavorhersagen

Um die neue Formel zu testen, nutzten die Forschenden das globale Aerosol-Klimamodell ECHAM-HAM. „Wir konnten in unserer Studie experimentell zeigen, dass an dieser Stelle vereinfachte Annahmen getroffen werden können, ohne große Unsicherheiten in den Modellergebnissen zu verursachen. Dadurch werden Untersuchungen und Vorhersagen zum Klimawandel zuverlässiger“, fasst Mira Pöhlker zusammen. „Ermöglicht wurde unsere Studie durch Messkampagnen mit internationalen Partnern an verschiedensten Standorten weltweit sowie durch langfristige Beobachtungen an besonderen Forschungsstationen wie beispielsweise dem ATTO-Observatorium im brasilianischen Regenwald“, betont Christopher Pöhlker vom Max-Planck-Institut für Chemie in Mainz.



Diese Newsmeldung wurde mit Material des Leibniz-Instituts für Troposphärenforschung e. V. via Informationsdienst Wissenschaft erstellt


Die News der letzten 14 Tage 5 Meldungen


Mehr zu den Themen






warte

warte

warte

warte

warte

warte

warte

warte

warte

warte