Ultraschnelle Steuerung quantenverschränkter Elektronen

Ultraschnelle Steuerung quantenverschränkter Elektronen



Physik-News vom 25.09.2024

Forschenden in Heidelberg ist es gelungen in die Bewegung des Elektronenpaars im Wasserstoffmolekül gezielt einzugreifen. Die Emissionsrichtung eines durch Licht (ein Photon) herausgelösten Photoelektrons in Bezug auf das verbleibende gebundene Elektron im abgespalteten neutrale Wasserstoff-Atom lässt sich durch den zeitlichen Abstand zweier Laserblitze auf der Skala von einigen 100 Attosekunden (10-18 s) steuern. Die somit einstellbare Emissionsasymmetrie beruht auf der Quantenverschränkung zwischen dem gebundenen und dem davon räumlich getrennten emittierten Elektron.

Gehen wir nach links oder nach rechts? Eine grundlegende Frage, deren Antwort in unserer klassischen Welt bei einer Wanderung (normalerweise) leicht fällt, kann in der Quantenwelt der Elementarteilchen viel schwieriger zu beantworten sein. Elektronen und Protonen, die Bausteine von Molekülen, können in Zuständen existieren, die gleichzeitig nach links UND nach rechts gehen, und ihre Entscheidung, sich in einer dieser Möglichkeiten zu „materialisieren“, treffen sie erst im Moment ihrer Messung (z. B. durch Auftreffen auf einem Teilchendetektor).

Dieses als Quantenverschränkung bezeichnete Phänomen bildet die Grundlage für so genannte Quantencomputer, in denen Informationen in Quantenbits (Qubits) gespeichert und verarbeitet werden, welche Überlagerungen von gleichzeitig rechts UND links oder 0 UND 1 in der Computersprache ermöglichen. Dadurch wird die Quantenberechnung auf solchen Maschinen viel leistungsfähiger als auf klassischen Computern, da im Grunde mehrere Berechnungen, die nacheinander lange dauern würden, jetzt alle gleichzeitig ablaufen. Aber es gibt auch Probleme: Die Programmierung von Quantencomputern ist komplex und erfordert viele Schritte, die Zeit brauchen – Zeit, in der diese Einheit der Quantenverarbeitung instabil werden kann (durch „Dekohärenz“).


Quantencomputer - Symbolbild

Publikation:


Farshad Shobeiry, Patrick Fross, Hemkumar Srinivas, Thomas Pfeifer, Robert Moshammer, and Anne Harth
Emission control of entangled electrons in photoionization of a hydrogen molecule
Scientific Reports 14, 19630 (2024)

DOI: https://doi.org/10.1038/s41598-024-67465-0



Ein Physik-Forschungsteam des MPIK Heidelberg – Farshad Shobeiry, Patrick Fross, Hemkumar Srinivas, Thomas Pfeifer, Robert Moshammer und Anne Harth (jetzt Professorin an der Hochschule Aalen) – hat jetzt einen bedeutenden Schritt in Richtung einer dramatischen (mehr als 100.000-fachen) Beschleunigung der Kontrolle von verschränkten Quantenzuständen gemacht: von Nanosekunden auf Femto- (10-15 s) oder sogar Attosekunden (10-18 s). Die Forschenden untersuchten in ihrem Attosekunden-Laserlabor die grundlegende Quantendynamik von Wasserstoffmolekülen (zwei Protonen, zwei Elektronen), indem sie Elektronen und Protonen nach ihrer Wechselwirkung mit diesen ultrakurzen Lichtblitzen (Pulsen) detektierten. Sie fanden heraus, dass die Emissionsrichtung der Elektronen im Verhältnis zu den Protonen durch Verzögerung der Attosekundenpulse im Verhältnis zu den Maxima und Minima einer Laserlichtwelle auf einer Zeitskala von weniger als einer Femtosekunde verändert werden kann.


Skizze der dissoziativen Photoionisation von molekularem Wasserstoff unter Verwendung kombinierter IR- und XUV-Laserpulse mit variabler Verzögerung (weißer Pfeil).

Ein allgemeines theoretisches Modell erklärt diesen Befund durch die oben erwähnte Überlagerung von Zuständen: Zwei Elektronen des Moleküls sind quantenmechanisch verschränkt, obwohl sie sich an unterschiedlichen Orten befinden (eines davon fliegt isoliert davon, das andere ist noch an ein Proton gebunden). Die Theorie zeigte auch, dass diese Zustände, die den so genannten Bell-Zuständen (einem Eckpfeiler der Quanteninformationstheorie) ähneln, durch Verzögerungen von Attosekunden zwischen einem hochfrequenten (Extrem-Ultraviolett, XUV) und einem niederfrequenten (Infrarot, IR) Lichtblitz verändert werden können.


Optische Kontrolle der dissoziativen Photoionisation von H2: Links/Rechts-Asymmetrie der Photoelektronen-Emissionsrichtung in Bezug auf das ausgehende neutrale H-Atom als Funktion der kinetischen Energie der Fragmente (KER) und der IR/XUV-Verzögerung.

Es ist zwar noch zu früh, um einen brauchbaren Quantencomputer auf der Grundlage dieser Idee zu entwerfen, aber sie liefert die grundlegenden physikalischen Erkenntnisse für die Programmierung von Quanteninformation auf extrem kurzen Zeitskalen. Die Allgemeingültigkeit des Modells, das zur Erklärung des am MPIK Heidelberg durchgeführten Experiments verwendet wurde, erlaubt im Prinzip, es von Wasserstoff auf jedes andere System zu übertragen, in dem zwei Lichtfarben „gemischt“ werden können, um Quantenkontrolle über verschränkte Zustände auf der fundamentalen „ultraschnellen“ Zeitskala elektronischer Bewegung zu erreichen.


Diese Newsmeldung wurde mit Material des Max-Planck-Instituts für Kernphysik via Informationsdienst Wissenschaft erstellt.


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte