Detaillierter Blick in die Quantenwelt

Detaillierter Blick in die Quantenwelt



Physik-News vom 02.04.2019

Mit einem programmierbaren Quantensimulator konnte ein internationales Forschungsteam die Eigenschaften von verschiedenen Quantenphasenübergängen untersuchen. Aufgrund der Komplexität der Prozesse waren diese Dynamiken bisher experimentell nicht zugänglich. Die Forscher berichten darüber in der Fachzeitschrift Nature.

Komplexe Vorgänge in der Quantenwelt von Atomen und Molekülen sind nur schwer zu verstehen, und sie in der Natur zu beobachten ist noch viel schwieriger. Deshalb nutzt die Wissenschaft im Labor gut kontrollierte Quantensysteme - sogenannte Quantensimulatoren - um Quantenprozesse zu erforschen. In den vergangenen Jahren wurden programmierbare Quantensimulatoren entwickelt. Sie verfügen im Vergleich zu einem voll programmierbaren Quantencomputer über einen deutlich beschränkteren Befehlssatz, lassen sich aber auf eine wesentlich größere Zahl von Teilchen skalieren. In den USA haben Forscher nun einen solchen programmierbaren Quantensimulator dazu verwendet, um sogenannte Quantenphasenübergänge zu studieren.

Peter Zoller

In dem Experiment wurden 51 Atome in optischen Pinzetten („Tweezern”) gefangen und ihre internen Freiheitsgrade mit Lasern manipuliert. Durch die Ausnützung von Eigenschaften von Rydberg-Zuständen erzeugten die Forscher Wechselwirkungen zwischen den Atomen und realisierten so ein kontrolliertes Quantenvielteilchensystem. „Interessanterweise kann dieses System in verschiedene Quantenphasen gebracht werden, die alle durch unterschiedliche Quantenphasenübergänge voneinander getrennt sind. Der dynamische Übergang von einer Phase in eine andere ist ein komplexer Prozess“, erklärt Peter Zoller vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.

Idee experimentell bestätigt

Der Theoretiker Peter Zoller hatte gemeinsam mit Kollegen schon vor Jahren die Hypothese aufgestellt, dass der Übergang zwischen Quantenphasen durch „universelle“ Gesetze und Skalierungen beschrieben werden kann, die nur vom Typ des Quantenphasenübergangs abhängen, nicht aber von mikroskopischen Details des Systems. Diese Vorhersage wurde nun in dem Experiment an der Harvard University eindrucksvoll bestätigt.

„Da in dem Experiment verschiedene Typen von Quantenphasenübergängen zugänglich sind, konnte dies nicht nur bei relativ gut verstandenen Formen von Quantenphasenübergängen untersucht werden, sondern auch bei exotischeren“, erzählt Hannes Pichler. Der gebürtige Südtiroler hat bei Peter Zoller promoviert und forscht seit 2016 als ITAMP Postdoctoral Fellow an der Harvard University, USA. In enger Kooperation mit Peter Zoller und seinen Innsbrucker Kollegen hat Pichler an der Konzeption des Experiments wesentlich mitarbeitet und gemeinsam mit seinen Kollegen das Quantensystem theoretisch modelliert und die Eigenschaften der verschiedenen Phasenübergänge analysiert.

Die nun in der Fachzeitschrift Nature veröffentlichte Forschungsarbeit entstand in einer Zusammenarbeit von Forschern der Harvard University, des MIT, des Caltech und der Universität Innsbruck sowie des IQOQI Innsbruck und wurde von Mikhail Lukin, Markus Greiner und Vladan Vuletic geleitet.


Diese Newsmeldung wurde via Informationsdienst Wissenschaft erstellt.

Mehr zu den Themen


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte