Die Thermodynamik des Quantencomputers

Die Thermodynamik des Quantencomputers



Physik-News vom 10.01.2023

Die Entstehung von Wärme ist ein Aspekt, der in der Forschung zum Quantencomputer bisher vernachlässigt wurde. Physikerinnen und Physiker aus Konstanz, Grenoble und Helsinki lenken nun die Aufmerksamkeit auf den Störfaktor Wärme – und schufen ein Verfahren, um die Wärmeentwicklung eines supraleitenden Quantensystems experimentell zu messen.

Hitze und Computer vertragen sich bekanntlich nicht gut. Wird ein Rechner zu heiß, gerät seine Leistung ins Stocken und er kann sogar abstürzen. Wie steht es aber um den künftigen Quantencomputer? Diese Hochleistungsrechner der Zukunft reagieren sogar noch empfindlicher auf Wärmeentwicklung. Ihre Grundrecheneinheiten – die Quantenbits, genannt Qubits – basieren nämlich auf hochempfindlichen Einheiten, teils auf einzelnen Atomen. Wärme kann hier ein entscheidender Störfaktor sein.


Clemens Winkelmann

Publikation:


E. Gümüş, D. Majidi, D. Nikolić, P. Raif, B. Karimi, J. T. Peltonen, E. Scheer, J. P. Pekola, H. Courtois, W. Belzig, C. B. Winkelmann
Calorimetry of a phase slip in a Josephson junction
Nat. Phys. (2023)

DOI: 10.1038/s41567-022-01844-0



Das grundlegende Dilemma: Um die Information eines Qubits abzurufen, muss zwangsläufig sein Quantenzustand zerstört werden, wodurch Wärme freigesetzt wird. Diese Wärme kann wiederum das sensible Quantensystem stören. Die eigene Wärmeentwicklung könnte dem Quantencomputer folglich zum Problem werden, vermuten die Physiker Wolfgang Belzig (Universität Konstanz), Clemens Winkelmann (Grenoble INP) und Jukka Pekola (Aalto University, Helsinki). Ihnen gelang es nun, die Wärmeentwicklung von supraleitenden Quantensystemen experimentell nachzuweisen. Sie entwickelten hierfür ein Verfahren, das den Temperaturverlauf beim Auslesen eines Qubits auf die Millionstel Sekunde genau messen und in seinem Zeitverlauf darstellen kann. „Wir können dadurch sozusagen zuschauen, wie der Prozess passiert“, erklärt Wolfgang Belzig. Das Verfahren wurde aktuell in der Fachzeitschrift Nature Physics vorgestellt.


Elektronenmikroskopische Aufnahme des gesamten supraleitenden Quantenbits.
Elektronenmikroskopische Vergrößerung der metallischen Schwachstelle (rot) und des Kontakts zur Temperaturmessung (blau, unten).

Auch supraleitende Quantensysteme produzieren Wärme

Die bisherige Forschung zum Quantencomputer kreist um die Grundlagen, die den Hochleistungsrechner zum Laufen bringen sollen: Vieles dreht sich vorwiegend um die Kopplung von Quantenbits und um die Frage, welche Materialsysteme sich am besten für Qubits eignen. Um Wärmeentwicklung hat sich die Quantencomputer-Forschung bisher wenig Gedanken gemacht: Gerade bei supraleitenden Qubits, die vermeintlich aus einem ideal leitenden Material bestehen, wird häufig schlicht und ergreifend davon ausgegangen, dass keine Wärme entsteht oder diese vernachlässigbar ist. „Das ist ein Irrtum“, warnt Wolfgang Belzig: „Bei Quantencomputern wird oft an idealisierte Systeme gedacht. Aber auch die Schaltung eines supraleitenden Quantensystems produziert Wärme.“ Wie viel genau, können die Forscherinnen und Forscher nun präzise nachweisen.

Schema des Quantensprungs der Flusslinie (pink). Das SINS-Thermometer misst die Temperatur während des Sprungs.

Wie die Wärmemessung beim Quantenbit funktioniert

Das Messverfahren wurde für supraleitende Quantensysteme entwickelt. Diese basieren auf supraleitenden Schaltkreisen, welche als zentrales elektronisches Element die sogenannten Josephson-Kontakte nutzen. „Wir messen die Elektronentemperatur durch die Leitfähigkeit eines solchen Kontakts. Das ist an sich noch nichts Ungewöhnliches: Viele elektronischen Thermometer basieren in gewisser Weise auf der Messung von Leitfähigkeit anhand eines Widerstands. Das Problem ist nur: Wie schnell kann man so etwas auslesen?“, macht Clemens Winkelmann deutlich. Im Fall der Veränderung eines Quantenzustands haben wir es immerhin mit Zeiträumen von Millionstel Sekunden zu tun.



Wärme wird immer entstehen

Mit ihrem experimentellen Nachweis wollen die Forscherinnen und Forscher den Blick auf die thermodynamischen Prozesse eines Quantensystems lenken. „Unsere Nachricht an die Fachwelt lautet: Vorsicht, es wird immer Wärme entstehen. Wir können sogar messen, wie viel“, so Winkelmann.

Diese Wärmeentwicklung könnte insbesondere in Hinblick auf die Skalierbarkeit von Quantensystemen relevant werden, schildert Wolfgang Belzig: „Einer der größten Vorteile von supraleitenden Qubits ist, dass sie so groß sind – weil man sie dadurch gut bauen und kontrollieren kann. Wenn man aber viele Qubits auf einen Chip setzen will, ist die Größe wiederum ein Nachteil. Es muss den Forschenden bewusst sein, dass entsprechend mehr Wärme entsteht und man das System adäquat kühlen muss.“


Diese Newsmeldung wurde mit Material der Universität Konstanz via Informationsdienst Wissenschaft erstellt.


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte