Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Physik-News vom 21.10.2019
 

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der winzigen Grösse des Atoms eine grosse Herausforderung dar. Schickt man das Photon jedoch mehrmals mittels Spiegeln am Atom vorbei, erhöht sich die Wahrscheinlichkeit einer Wechselwirkung wesentlich.


Ein mikroskopischer Hohlraum aus zwei hochreflektierenden Spiegeln wird verwendet, um ein eingeschlossenes künstliches Atom (sog. Quantenpunkt) mit einem einzelnen Photon wechselwirken zu lassen.

Publikation:


Daniel Najer, Immo Söllner, Pavel Sekatski, Vincent Dolique, Matthias C. Löbl, Daniel Riedel, Rüdiger Schott, Sebastian Starosielec, Sascha R. Valentin, Andreas D. Wieck, Nicolas Sangouard, Arne Ludwig & Richard J. Warburton
A gated quantum dot strongly coupled to an optical microcavity
Nature (2019)

DOI: 10.1038/s41586-019-1709-y



Um Photonen zu erzeugen, verwenden die Forscher künstliche Atome, sogenannte Quantenpunkte. Diese Halbleiterstrukturen bestehen aus einer Ansammlung von zehntausenden von Atomen, verhalten sich aber ähnlich wie ein einzelnes Atom: Werden sie optisch angeregt, ändert sich ihr Energiezustand und sie emittieren ein Photon. «Sie haben jedoch den technologischen Vorteil, dass man sie in einem Halbleiterchip einbetten kann», so Dr. Daniel Najer, der das Experiment am Departement Physik der Universität Basel durchgeführt hat.

System aus Quantenpunkt und Mikrohohlraum

Normalerweise fliegen diese Lichtteilchen wie bei einer Glühbirne in alle Richtungen davon. Für ihr Experiment haben die Forscher den Quantenpunkt aber in einem Hohlraum mit spiegelnden Wänden eingeschlossen. Diese gekrümmten Spiegel werfen das emittierte Photon bis zu 10.000 Mal hin und her, wodurch eine Wechselwirkung von Licht und Materie einsetzt.

Messungen zeigen, dass ein einzelnes Photon bis zu zehn Mal vom Quantenpunkt emittiert und wieder absorbiert wird. Auf der Quantenebene verwandelt sich das Photon also in einen höherenergetischen Zustand des künstlichen Atoms, worauf wieder ein neues Photon ausgesandt wird. Und zwar sehr schnell, was im Hinblick auf quantentechnologische Anwendungen sehr erwünscht ist: Ein Zyklus dauert nur 200 Picosekunden.

Der Übergang eines Energiequants von einem Quantenpunkt in ein Photon und wieder zurück sei theoretisch gut abgestützt, doch «hat zuvor noch niemand diese Oszillationen so klar beobachtet», sagt Prof. Dr. Richard J. Warburton vom Departement Physik der Universität Basel.

Serielle Wechselwirkung von Licht und Materie

Bedeutend ist das erfolgreiche Experiment vor allem deswegen, weil in der Natur keine direkten Photon-Photon-Wechselwirkungen vorkommen. Eine kontrollierte Wechselwirkung ist aber für eine Anwendung in der Quanteninformationsverarbeitung erforderlich.

Durch die Umwandlung von Licht in Materie nach den Gesetzen der Quantenphysik wird die Wechselwirkung zwischen einzelnen Photonen indirekt möglich – nämlich über den Umweg einer Verschränkung zwischen einem Photon und einem einzelnen Elektronenspin, der im Quantenpunkt gefangen ist. Nimmt man mehrere solche Photonen, lassen sich Quantengatter aus verschränkten Photonen realisieren. Das ist für die Erzeugung von photonischen Qubits, welche Information mittels des Quantenzustands von Lichtteilchen speichern und über weite Entfernungen übertragen können, ein wichtiger Schritt.


Diese Newsmeldung wurde mit Material des Informationsdienstes der Wissenschaft (idw) erstellt


Die News der letzten 14 Tage 5 Meldungen


Mehr zu den Themen






warte

warte

warte

warte

warte

warte

warte

warte

warte

warte