Ins dunkle Herz von Centaurus A

Ins dunkle Herz von Centaurus A

Physik-News vom 19.07.2021
 

Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet. Die Astronomen konnten die Position des supermassereichen Schwarzen Lochs im Zentrum genau bestimmen und zeigen, wie dort ein gigantischer Jet geboren wird. Am bemerkenswertesten ist, dass nur die äußeren Ränder des Jets Strahlung auszusenden scheinen. Das stellt eine Reihe theoretischer Modelle zur Funktionsweise der Jets in Frage.

In Radiowellenlängen erscheint Centaurus A als eines der größten und hellsten Objekte am Nachthimmel. Nachdem das Objekt 1949 als eine der ersten bekannten extragalaktischen Radioquellen identifiziert werden konnte (mit der Galaxie NGC 5128), ist Centaurus A über das gesamte elektromagnetische Spektrum hinweg mit einer Vielzahl von Radio-, Infrarot-, optischen, Röntgen- und Gammastrahlen-Observatorien ausgiebig erforscht worden. Im Zentrum von Centaurus A liegt ein Schwarzes Loch von 55 Millionen Sonnenmassen, was genau zwischen dem Schwarzen Loch im Zentrum der Galaxie M87 (sechseinhalb Milliarden Sonnenmassen) und dem im Zentrum unserer Milchstraße (etwa vier Millionen Sonnenmassen) liegt.


Das Atacama Pathfinder Experiment (APEX), betrieben in einer Kollaboration von MPIfR, ESO and OSO, ist eines der acht Submillimeter-Radioteleskop, die bei den Beobachtungen von Centaurus A im Rahmen der 2017er Beobachtungskampagne zum Einsatz kamen.
Entfernungsskalen in der Jetstruktur von Centaurus A, von ausgedehnten Plasmawolken („radio lobes“) die sich über insgesamt 8 Grad am Himmel erstrecken, bis zum aktuellen EHT-Bild der Startregion des Jets in höchster Auflösung (60.000.000fach).

In einer neuen Veröffentlichung in der Fachzeitschrift „Nature Astronomy“ wurden Daten der EHT-Beobachtungen aus dem Jahr 2017 analysiert, um Centaurus A in vorher nicht erreichtem Detail abzubilden. "Dies erlaubt uns zum ersten Mal, einen extragalaktischen Radiojet auf Skalen zu untersuchen, die kleiner sind als die Entfernung, die das Licht an einem Tag zurücklegt. Wir sehen hautnah, wie ein ungeheuer gewaltiger Jet, ausgehend von einem supermassereichen Schwarzen Loch, geboren wird", sagt Astronom Michael Janssen, der Erstautor der Veröffentlichung.

Centaurus A wurde bereits im Januar 2015 durch rekordverdächtige Beobachtungen mit einem einzigen Teleskoppaar bei einer Wellenlänge von 1 mm erforscht, als es vom APEX-Teleskop und dem Radioteleskop am Südpol gleichzeitig beobachtet wurde. "Diese bahnbrechenden Beobachtungen, aus denen wir nur die Kompaktheit des Kerns der Quelle abschätzen konnten, haben den Weg zu dem Bild geebnet, das wir jetzt mit dem Einsatz des kompletten EHT-Netzwerks präsentieren können", ergänzt Eduardo Ros, ebenfalls vom Max-Planck-Institut für Radioastronomie (MPIfR).

Im Vergleich zu allen bisherigen hochauflösenden Beobachtungen wird der in Centaurus A gestartete Jet mit einer zehnfach höheren Frequenz und sechzehnfach schärferen Auflösung abgebildet. Mit dem Auflösungsvermögen des EHT können nun die gewaltigen Ausmaße der Quelle dargestellt werden, mit einer Gesamtausdehnung des 16-fachen Winkeldurchmesser des Mondes am Himmel. Das Ganze verbunden mit dem Ursprung in der Nähe des Schwarzen Lochs in einem Bereich von gerade einmal der Breite eines Apfels auf dem Mond, wenn man ihn auf den Himmel projiziert. Das entspricht insgesamt einem Vergrößerungsfaktor von einer Milliarde (1 000 000 000 oder 10^9).



Astronomen versuchen mit unterschiedlichen Modellen zu erklären, wie sich Materie in der Nähe des Schwarzen Lochs verhält. Aber sie wissen immer noch nicht genau, wie die Jets aus der Zentralregion der Galaxien gestartet werden und wie sie sich über Skalen erstrecken können, die ein gutes Stück größer sind als ihre Wirtsgalaxien selbst. Mit dem EHT soll dieses Rätsel aufklärt werden.

Das neue Bild zeigt, dass der aus dem Inneren von Centaurus A gestartete Jet an den Rändern heller ist als im Zentrum. Dieses Phänomen ist von anderen Jets bekannt, wurde aber noch nie so ausgeprägt gesehen. "Jetzt können wir alle theoretischen Jet-Modelle ausschließen, die diese Randaufhellung nicht reproduzieren können. Es ist ein auffälliges Beobachtungsmerkmal, das uns helfen wird, Jets, die von Schwarzen Löchern erzeugt werden, besser zu verstehen", sagt Matthias Kadler, Leiter des TANAMI-Programms und Professor für Astrophysik an der Universität Würzburg.

Zukünftige Beobachtungen

Mit den neuen EHT-Beobachtungen der Zentralregion von Centaurus A wurde die wahrscheinliche Position des Schwarzen Lochs am Startpunkt des Jets identifiziert. Basierend auf dieser Erkenntnis sagen die Forscher voraus, dass zukünftige Beobachtungen bei noch kürzerer Wellenlänge und höherer Auflösung in der Lage sein werden, das zentrale Schwarze Loch von Centaurus A abbilden zu können.

"Diese Daten stammen aus der gleichen Beobachtungskampagne, die das berühmte Bild des Schwarzen Lochs in M87 lieferte. Die neuen Ergebnisse zeigen, dass das EHT eine Fundgrube für Daten über die reiche Vielfalt von Schwarzen Löchern darstellt", sagt Heino Falcke, EHT-Vorstandsmitglied und Professor für Astrophysik an der Radboud-Universität Nijmegen.

Anton Zensus, Direktor am MPIfR und Gründungsvorsitzender der EHT-Kollaboration, ist zuversichtlich: "Das EHT ermöglicht uns nicht allein einen Blick auf die Schatten von Schwarzen Löchern. Es untersucht auch den Ursprung der riesigen Materiejets in Galaxien. Relativität und Magnetfelder wirken zusammen in den Jets, die aus der direkten Umgebung des Schwarzen Lochs hervorgehen. Wir konzentrieren unsere Forschung jetzt verstärkt auf die Magnetfelder in den Herzen von Radiogalaxien und Quasaren. Ich bin sicher, dass wir die dafür nötigen verbesserten Methoden zur Auswertung der neuen Beobachtungen bald beherrschen werden."


Diese Newsmeldung wurde mit Material des Max-Planck-Instituts für Radioastronomie via Informationsdienst Wissenschaft erstellt


Die News der letzten 14 Tage 3 Meldungen







warte

warte

warte

warte

warte

warte

warte

warte

warte

warte