Mikroskopisch kleine Kraken aus dem 3D-Drucker

Physik-News vom 04.10.2022


Mikroskopisch kleine Kraken aus dem 3D-Drucker: Neu entwickelte intelligente Polymere verfügen über „lebensechte“ Eigenschaften. Die mikroskopisch kleinen Tiere wie Geckos und Kraken, die mittels 3D-Laserdruck hergestellt wurden, könnten in Forschungsgebieten wie der Mikrorobotik oder Biomedizin neue Möglichkeiten erschließen. Sie bestehen aus neuartigen intelligenten Polymeren, die in ihrer Größe und ihren mechanischen Eigenschaften je nach Anforderung angepasst werden können. Entwickelt wurden diese „lebensechten“ 3D-Mikrostrukturen im Rahmen des Exzellenzclusters „3D Matter Made to Order“.

Auf den ersten Blick nur possierliche Tierchen: Die mikroskopisch kleinen Geckos und Kraken, die in den Laboren des Molecular Engineering der Universität Heidelberg mittels 3D-Laserdruck hergestellt wurden, könnten jedoch in Forschungsgebieten wie der Mikrorobotik oder Biomedizin neue Möglichkeiten erschließen. Die gedruckten Mikrostrukturen bestehen aus neuartigen Materialien – sogenannten intelligenten Polymeren –, die in ihrer Größe und ihren mechanischen Eigenschaften je nach Anforderung mit hoher Präzision angepasst werden können. Entwickelt wurden diese „lebensechten“ 3D-Mikrostrukturen im Rahmen des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O), der von der Ruperto Carola und dem Karlsruher Institut für Technologie (KIT) getragen wird.


Intelligente Polymere mit „lebensechten“ Eigenschaften: Aufgrund dynamischer chemischer Verbindungen können die mikrometrischen 3D-Gebilde innerhalb weniger Stunden um das Achtfache ihres Volumens wachsen und sich verhärten. Skala: 20 Mikrometer (µm).

Publikation:


C.A. Spiegel, M. Hackner, V.P. Bothe, J.P. Spatz, E. Blasco
4D Printing of Shape Memory Polymers: From Macro to Micro
Advanced Functional Materials (2022)

DOI: 10.1002/adfm.202110580



Publikation:


Y. Jia, C.A. Spiegel, A. Welle, S. Heißler, E. Sedghamiz, M. Liu, W. Wenzel, M. Hackner, J.P. Spatz, M. Tsotsalas, E. Blasco
Covalent Adaptable Microstructures via Combining Two-Photon Laser Printing and Alkoxyamine Chemistry: Toward Living 3D Microstructures
Advanced Functional Materials (2022)

DOI: 10.1002/adfm.202207826

„Die Herstellung programmierbarer Materialien, deren mechanische Eigenschaften je nach Bedarf angepasst werden können, ist für zahlreiche Anwendungen äußerst gefragt“, sagt Juniorprofessorin Dr. Eva Blasco, Leiterin einer Arbeitsgruppe am Organisch-Chemischen Institut und am Institute for Molecular Systems Engineering and Advanced Materials der Universität Heidelberg. Dieses Konzept wird als 4D-Druck bezeichnet. Dabei bezieht sich die zusätzliche vierte Dimension auf die Fähigkeit von dreidimensional gedruckten Objekten, ihre Eigenschaften im Verlauf der Zeit zu verändern. Ein typisches Material für den 4D Druck sind Formgedächtnispolymere – intelligente Materialien, die als Reaktion auf einen externen Stimulus wie die Temperatur aus einem verformten Zustand zu ihrer ursprünglichen Form zurückkehren können.

Das Team von Prof. Blasco hat kürzlich eines der ersten Beispiele für dreidimensional gedruckte Formgedächtnispolymere auf der Mikroskala vorgestellt. In Zusammenarbeit mit der Arbeitsgruppe des Biophysikers Prof. Dr. Joachim Spatz, Wissenschaftler an der Ruperto Carola und Direktor am Max-Planck-Institut für medizinische Forschung, entwickelten die Forscher ein neues Formgedächtnismaterial, das im Makrobereich ebenso wie im Mikrobereich mit hoher Auflösung 3D-gedruckt werden kann. So entstanden unter anderem boxartige Mikroarchitekturen, deren Deckel sich unter Hitzeeinwirkung schließen und anschließend wieder öffnen lassen. „Diese sehr kleinen Strukturen zeigen bei geringen Auslösetemperaturen außergewöhnliche Formgedächtniseigenschaften, was insbesondere für Bioanwendungen von großem Interesse ist“, sagt Christoph Spiegel, Doktorand in der Arbeitsgruppe von Eva Blasco.


Weitere 3D-Tierchen und Blümchen.

In einer Folgearbeit ist es den Forschern mithilfe von adaptiven Materialien gelungen, wesentlich komplexere 3D-Mikrostrukturen wie Geckos und Kraken oder auch Sonnenblumen mit „lebensechten“ Eigenschaften herzustellen. Diese Materialien beruhen auf dynamischen chemischen Bindungen. Besonders gut eignen sich nach Angaben der Heidelberger Wissenschaftler dafür sogenannte Alkoxyamine. Nach dem Druckvorgang sorgen diese dynamischen Bindungen dafür, dass die komplexen, mikrometrischen Gebilde in nur wenigen Stunden um das Achtfache ihres Volumens wachsen und sich verhärten, wobei die Form erhalten bleibt. „Herkömmliche Tinten verfügen nicht über solche Eigenschaften“, betont Prof. Blasco. „Adaptive Materialien mit dynamischen Bindungen haben eine vielversprechende Zukunft im Bereich des 3D-Drucks“, so die Chemikerin.

An der Forschung zu adaptiven Materialien mit „lebensechten“ Eigenschaften waren auch Materialwissenschaftler des Karlsruher Instituts für Technologie (KIT) beteiligt. Die Deutsche Forschungsgemeinschaft und die Carl-Zeiss-Stiftung haben die im Rahmen des Exzellenzclusters 3DMM2O durchgeführten Arbeiten gefördert. Die Forschungsergebnisse wurden in zwei Papers in der Fachzeitschrift „Advanced Functional Materials“ veröffentlicht.


Die News der letzten 14 Tage 8 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.

18.10.2022
Atomphysik | Thermodynamik | Quantenoptik

Lichtgetriebene Molekülschaukel
Chemiker und Physiker haben mit ultrakurzen Laserpulsen die Atome von Molekülen in Schwingung versetzt und die dabei stattfindende Dynamik der Energieübertragung analysiert.
17.01.2019
Elektrodynamik | Quantenoptik

Wie Moleküle im Laserfeld wippen
Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger Dipol induziert.
02.11.2018
Quantenphysik | Quantenoptik

Komplexer Quantenteleportation einen Schritt näher
Für zukünftige Technologien wie Quantencomputer und Quantenverschlüsselung ist die experimentelle Beherrschung von komplexen Quantensystemen unumgänglich.
10.04.2018
Festkörperphysik | Quantenoptik

Fraunhofer INT und Fraunhofer Space auf der ILA 2018: Bestrahlungstests und Satellitentechnologie
Auf der ILA 2018 in Berlin präsentiert das Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT am Stand 202 in Halle 4 den Nachbau einer Co-60-Bestrahlungsanlage und bestrahlte Materialproben, die den Einfluss von Strahlung auf verschiedene Materialien veranschaulichen.
12.07.2022
Quantenoptik

Lichtspirale fotografiert
Seit Ende des 19ten Jahrhunderts weiß man, dass Licht als elektromagnetische Welle Schwingungen ausführt, deren Frequenz die Lichtfarbe festlegt.
26.09.2019
Festkörperphysik | Quantenoptik

(Laser)Photonen und Elektronen schalten die Silber-Silber-Wechselwirkung und Reaktivität
Forschern aus dem Transregio-Sonderforschungsbereich „Kooperative Effekte in homo- und heterometallischen Komplexen“ (SFB/TRR 88 „3MET“) gelang es, eine neue Komplexverbindung aus Silber und Wasserstoff (Silberhydrid) herzustellen, die interessante optische Eigenschaften und Reaktivität gegenüber Sauerstoff aufweist.
21.02.2019
Atomphysik | Quantenoptik

Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen
Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen.
20.06.2018
Quantenoptik

Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen.
06.11.2017
Quantenoptik

Quantencomputer kommen in Bewegung
Die wissenschaftliche Arbeit von Kaufmann et al.
17.04.2018
Quantenoptik

Laserbasiertes Röntgenbild im Eiltempo
Garchinger Laserphysiker haben mit Hilfe einer laserbasierten Röntgentechnik erstmals eine Knochenprobe innerhalb weniger Minuten rekonstruiert.
24.10.2018
Quantenphysik | Quantenoptik

Mehr Torerfolge beim Quantenfußball
Physiker der Universität Bonn haben eine Methode vorgestellt, die sich eventuell zur Herstellung so genannter Quanten-Repeater eignet.
24.04.2020
Elektrodynamik | Quantenoptik

Vermessung der Dynamik von Skyrmionen aus Licht auf ultraglatten Goldplättchen
Im Zentrum eines Wirbels bestehen sehr hohe Drehgeschwindigkeiten, die bei großen Tornados gewaltige Zerstörungskräfte entfalten können.
13.06.2019
Wellenlehre | Quantenoptik

Lasertrick liefert energiereiche Terahertz-Blitze
Auf dem Weg zu neuartigen, kompakten Teilchenbeschleunigern hat ein Forscherteam von DESY und der Universität Hamburg einen wichtigen Meilenstein erreicht: Mit ultrastarken Laserpulsen ist es den Wissenschaftlerinnen und Wissenschaftlern gelungen, besonders energiereiche Blitze im Terahertz-Bereich zu erzeugen, die eine scharf definierte Wellenlänge besitzen.
16.08.2021
Festkörperphysik | Quantenoptik

Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
13.02.2020
Elektrodynamik | Festkörperphysik | Quantenoptik

Forschenden gelang es erstmals, das elektrische Feld eines Attosekunden-Impulses zeitlich zu gestalten
Chemische Reaktionen werden auf ihrer grundlegendsten Ebene von ihrer jeweiligen elektronischen Struktur und Dynamik bestimmt.
01.10.2019
Relativitätstheorie | Quantenoptik

Beyond Einstein: Rätsel um Photonen-Impuls gelöst
Physiker der Goethe-Uni messen winzigen Effekt mit neuer super-COLTRIMS Apparatur/ Publikation in Nature Physics.
25.08.2021
Quantenoptik

Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
19.01.2021
Quantenoptik | Teilchenphysik

Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
13.07.2020
Quantenoptik | Teilchenphysik

Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt
Verschmelzung physikalischer und chemischer Methoden für die optische Spektroskopie superschwerer Elemente.
18.09.2018
Plasmaphysik | Quantenoptik

Extrem klein und schnell: Laser zündet heißes Plasma
Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab.
02.04.2020
Quantenoptik

Unsichtbares sichtbar machen
Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern.
15.06.2021
Festkörperphysik | Quantenoptik

Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
19.01.2022
Quantenoptik

Perfekte Falle: neue Methode, die Polarisation von Licht zu steuern
Für die Quantenkommunikation oder optische Computer ist es wichtig, messen und beeinflussen zu können, in welche Richtung Licht schwingt.
05.11.2019
Teilchenphysik | Quantenoptik

Verzerrte Atome
Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen.
12.02.2019
Teilchenphysik | Quantenoptik

Ungewöhnliche Symmetrie: Physiker kontrollieren Elektronen mit ultraschnellen Laserpulsen
Symmetrien sind in der Natur allgegenwärtig – etwa die Spiegelsymmetrie der Hände oder die sechszählige Symmetrie einer Schneeflocke.
12.02.2019
Atomphysik | Quantenoptik

Verwandlung im Licht
Laserphysiker nehmen Schnappschüsse vom Kohlenstoffmolekül C₆₀ auf und weisen seine Verwandlung im starken Infrarotlicht nach.
06.12.2018
Festkörperphysik | Quantenoptik

Drei Komponenten auf einem Chip
Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer.
03.08.2017
Quantenoptik

Ruckartige Bewegung schärft Röntgenpulse
Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“.
30.10.2018
Quantenphysik | Quantenoptik

Rydberg-Systeme als neue Plattform für Optische Quantenkommunikation und Quantennetzwerke
Durchbruch in der Quantenforschung: Mit elektromagnetisch induzierter Transparenz lassen sich starke Wechselwirkungen von Rydberg-Atomen auf Licht übertragen.
06.04.2018
Festkörperphysik | Quantenoptik

Winzige Strukturen – große Wirkung
Materialwissenschaftler der Universität Jena gestalten Oberfläche winziger, gekrümmter Kohlenstofffasern durch Laserstrukturierung.
26.02.2018
Quantenphysik | Quantenoptik

Auf dem Weg zum Quantencomputer: Weltweit erstes schaltbares Quanten-Metamaterial untersucht
Quantencomputer können eine große Zahl an Rechenoperationen gleichzeitig ausführen.
06.07.2018
Quantenoptik | Teilchenphysik

Bindungsbruch: Mitmachen oder nicht
Ob und wie sich chemische Reaktionen durch gezielte Schwingungsanregung der Ausgangsstoffe beeinflussen lassen, untersuchen Physiker um Roland Wester an der Universität Innsbruck.
09.08.2018
Quantenoptik | Teilchenphysik

Langsam, aber effizient
Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission.
06.03.2019
Atomphysik | Quantenoptik

Organische Bauelemente für Quantennetzwerke – Wenn ein Molekül Photonen sortiert
Physikern des Max-Planck-Instituts für die Physik des Lichts (MPL) in Erlangen ist es gelungen, ein organisches Molekül in ein fast perfektes Quantensystem mit nur zwei wohldefinierten Energieniveaus zu verwandeln.
02.09.2022
Planeten | Festkörperphysik | Quantenoptik

Mit Laserblitzen das Innere von Eisplaneten simuliert
Was geht im Zentrum von Planeten wie Neptun und Uranus vor?
26.07.2018
Quantenoptik | Teilchenphysik

Starke Kopplung durch Spin-Trio
Um Qubits für Quantencomputer weniger störanfällig zu machen, benutzt man vorzugsweise den Spin zum Beispiel eines Elektrons.
31.08.2021
Quantenoptik | Thermodynamik

Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
24.04.2019
Teilchenphysik | Quantenoptik

Münchner Lichtquanten-Destillerie
Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren.
22.03.2019
Quantenoptik

Die Zähmung der Lichtschraube
Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen.
14.07.2020
Elektrodynamik | Quantenoptik | Teilchenphysik

Hammer-on – wie man Atome schneller schwingen lässt
Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben.
28.06.2018
Quantenoptik | Teilchenphysik

Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten
Physiker am MPQ in Garching beobachten in einem Atom-Resonator-System starke Wechselwirkungen zwischen verschiedenfarbigen Photonen.
12.09.2022
Quantenoptik

Mehr Photonen für die Quantenkommunikation
Forscher*innen aus Deutschland und Österreich stellen eine neue Methode für die Erzeugung von Photonen vor, mit der die Informationsrate in zukünftigen Quantenkommunikationsnetzwerken verdoppelt werden kann.
22.08.2017
Astrophysik | Quantenoptik

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) konnten mit Kollegen aus Deutschland und den USA zeigen, dass sich in den Eisriesen unseres Sonnensystems „Diamantregen“ bildet.
05.03.2019
Quantenoptik

Der Anti-Laser mit dem Zufallsprinzip
Das Konzept des Lasers lässt sich umkehren: Aus der perfekten Lichtquelle wird dann der perfekte Licht-Absorber.
12.04.2022
Quantenoptik | Teilchenphysik

Intensives Laserlicht ändert Paarungsverhalten von Elektronen
Die quantenmechanische Austauschwechselwirkung zwischen Elektronen, eine Konsequenz des Pauli-Prinzips, kann man mit intensiven Infrarot-Lichtfeldern auf Zeitskalen weniger Femtosekunden gezielt verändern.
12.06.2019
Teilchenphysik | Quantenoptik

Laserblitze für polarisierte Elektronen- und Positronenstrahlen
Simulationsrechnungen zeigen neue Verfahren zur effizienten Polarisation: Physiker des Max-Planck-Instituts für Kernphysik in Heidelberg haben neuartige Methoden zur Erzeugung relativistischer spinpolarisierter Elektronen- und Positronenstrahlen vorgestellt.
19.02.2019
Quantenoptik

Physiker der TU Dortmund legt neue Grundlagen für die Weiterentwicklung von Strahlungsquellen
Die Forschungsergebnisse des Teams um JProf.
01.07.2020
Quantenoptik | Teilchenphysik

In das Innere der atomaren Materie blicken: Pikoskopie
Wissenschaftlern aus den Arbeitsgruppen von Professor E.
29.06.2018
Quantenphysik | Quantenoptik

Neue Methoden der 2D-Spektroskopie
Mit optischer Spektroskopie können Energiestruktur und dynamische Eigenschaften komplexer Quantensysteme untersucht werden.
19.03.2021
Quantenoptik

Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung.