Mögliche Erklärung für die Dominanz der Materie über Antimaterie im Universum

Mögliche Erklärung für die Dominanz der Materie über Antimaterie im Universum



Physik-News vom 17.08.2017

Neutrinos und Antineutrinos – auch Geisterteilchen genannt, weil sie schwierig nachzuweisen sind – können sich ineinander umwandeln. Die internationale T2K Kollaboration fand nun erste Hinweise, dass die Dominanz der Materie über Antimaterie im Universum durch das unterschiedliche Umwandlungs-Verhalten der Neutrinos und Antineutrinos erklärt werden könnte. Dies ist ein wichtiger Meilenstein für das Verständnis des Universums. Ein Team von Teilchenphysikern der Universität Bern hat entscheidende Beiträge zum Experiment geleistet.

Das Universum besteht in erster Linie aus Materie, und der offensichtliche Mangel an Antimaterie ist eine der faszinierendsten Fragen der Wissenschaft. Die T2K-Kollaboration, an der auch die Universität Bern beteiligt ist, hat heute in einem Vortrag am KEK Forschungszentrum in Tsukuba, Japan, verkündet, dass erste Hinweise gefunden wurden, dass mit 95 Prozent Wahrscheinlichkeit die Symmetrie zwischen Materie und Antimaterie (die sogenannte „CP-Symmetrie“) für Neutrinos verletzt ist.


Eine durch das T2K-Experiment beobachtete Elektron-Neutrino-Wechselwirkung.

Publikation:


authors
title_published
where_published

Unterschiedliche Transformation von Neutrinos und Antineutrinos

Neutrinos sind Elementarteilchen, die fast ohne Wechselwirkung durch die Materie reisen. Sie existieren als drei verschiedene Typen: als Elektron-, Myon- und Tau-Neutrinos und als deren jeweilige Antiteilchen (den Antineutrinos). Im Jahr 2013 entdeckte T2K eine neue Art von Transformation unter Neutrinos (Neutrino-Oszillation), bei welcher Myon-Neutrinos in Elektron-Neutrinos umgewandelt werden, während sie sich in Raum und Zeit bewegen. Die nun präsentierte T2K-Studie lehnt mit 95 Prozent Wahrscheinlichkeit die Hypothese ab, dass die Umwandlung der Anti-Neutrinos (von Myon-Antineutrinos zu Elektron-Antineutrinos) gleich häufig stattfindet. Dies ist der erste Hinweis, dass die Symmetrie zwischen Materie und Antimaterie in der Neutrino-Oszillationen verletzt ist, und deswegen die Neutrinos auch bei der Asymmetrie Materie und Antimaterie im Universum eine Rolle spielen.

„Diese Ergebnisse gehören zu den wichtigsten Erkenntnissen in der Neutrino-Physik in den letzten Jahren. Und sie eröffnen durch den Nachweis dieser winzigen, aber messbaren Wirkung, den Weg zu weiteren spannenden Messungen in den nächsten Jahren“, so Prof. Antonio Ereditato, Direktor des Laboratoriums für Hochenergiephysik der Universität Bern und Leiter der Berner T2K-Gruppe. Ereditato fügt hinzu: „Die Natur scheint anzuzeigen, dass Neutrinos für die beobachtete Vorherrschaft der Materie über Antimaterie im Universum verantwortlich sein können. Was wir gemessen haben, rechtfertigt unsere derzeitigen Bemühungen bei der Vorbereitung des nächsten wissenschaftlichen Unternehmens, DUNE, dem ultimativen Neutrino-Detektor in den USA, der eine endgültige Entdeckung ermöglichen sollte.“

Ein bemerkenswerter Beitrag der Berner Gruppe

Für das T2K-Experiment wird am Proton Accelerator Research Complex (J-PARC) in Tokai an der Ostküste Japans ein Myon-Neutrino-Strahl produziert, die in 295 Kilometer Entfernung vom gigantischen Kamiokande'>Super-Kamiokande-Untergrund-Detektor gemessen werden. T2K steht für „Tokai to Kamiokande“. Der Neutrino-Strahl muss unmittelbar nach der Produktion vollständig charakterisiert werden, also bevor Neutrinos sich umzuwandeln beginnen. Zu diesem Zweck wurde der ND280-Detektor in der Nähe des Neutrino-Ursprungsorts gebaut und installiert.

Forscher der Universität Bern haben zusammen mit Kollegen aus Genf, der ETH Zürich und anderen internationalen Instituten zum Design, zur Realisierung und zum Betrieb von ND280 beigetragen. Insbesondere kümmerte sich die Gruppe aus Bern um den großen Magneten, der den Detektor umgibt, und sie hat den sogenannten „Myon Monitor“ gebaut. Mit jedem Neutrino entsteht auch ein Myon, von welchen die die Intensität und die Energie gemessen wird. Die Berner Gruppe ist derzeit sehr aktiv bei der Bestimmung der Wahrscheinlichkeit der Wechselwirkung von Neutrinos mit dem ND280-Apparat: ein wichtiger Bestandteil der hochpräzisen Messungen der Neutrino-Umwandlungen.


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte