Perfekte Falle: neue Methode, die Polarisation von Licht zu steuern
Physik-News vom 19.01.2022
Für die Quantenkommunikation oder optische Computer ist es wichtig, messen und beeinflussen zu können, in welche Richtung Licht schwingt. Nun ist es zum ersten Mal gelungen, diese Polarisation bei einem kontinuierlichen Laserlichtstrahl mithilfe einer speziellen Glasfaser zu manipulieren, die an beiden Enden mit Spiegeln versehen ist.
Die Wissenschaftlerinnen und Wissenschaftler können nun die Polarisation einer kontinuierlichen Lichtwelle, die in einer Ebene schwingt, so ändern, dass sie sich kreisförmig fortbewegt – was an die Form eines Korkenziehers erinnert. Sie erzeugen diesen Effekt, indem sie infrarotes Laserlicht in eine zwei Meter lange Faser aus Quarzglas schicken. An deren beiden Enden befinden sich Spiegel, die mehr als 99 Prozent des Lichts reflektieren und aus dünnen Schichten Tantalpentoxid und Siliziumdioxid bestehen.
Hergestellt haben sie Forschende der Schweizer Universität Neuchâtel. Zum Vergleich: Ein handelsüblicher Badezimmerspiegel wirft nur 95 Prozent des Lichtes zurück.
Publikation:
Moroney, N., Del Bino, L., Zhang, S. et al.
A Kerr polarization controller
Nat Commun 13, 398 (2022)
DOI: 10.1038/s41467-021-27933-x
Das Licht in der Faser ist zwischen diesen nahezu perfekten Spiegeln gefangen und beginnt sein Verhalten zu ändern: Oberhalb eines bestimmten Wertes der Lichtenergie ändert sich die Polarisation in die kreisförmige Bewegung – entweder im Uhrzeigersinn oder entgegen ihm. Die Forschenden können die Richtung mithilfe der Lichtenergie steuern.
„Es ist technisch möglich diese Strukturen zu verkleinern und in einen optischen Chip zu integrieren“, erklärt Pascal Del’Haye, Leiter der unabhängigen Forschungsgruppe "Mikrophotonik" am Max-Planck-Institut für die Physik des Lichts.
Werden künftig mehrere dieser Strukturen auf einem optischen Bauteil angeordnet, lassen sich komplexe Polarisationszustände etwa für Telekommunikationssysteme erzeugen. Zudem können die Einheiten als sehr empfindliche Sensoren dienen und etwa die Leistung optischer neuronaler Netzwerke – für Anwendungen im Bereich der Künstlichen Intelligenz – oder für Systeme zur Informationsverarbeitung mit Quantentechnologien verbessern.
Diese Newsmeldung wurde mit Material des Max-Planck-Instituts für die Physik des Lichts via Informationsdienst Wissenschaft erstellt.