Studie: Einzelnes Atom als Messsonde nutzt erstmals Quanteninformationen

Physik-News vom 04.02.2020


Sensoren erfassen bestimmte Parameter wie Temperatur und Luftdruck in ihrer Umgebung. Kaiserslauterer Physikern ist es mit einem Kollegen aus Hannover erstmals gelungen, ein einzelnes Cäsium-Atom als Sensor für ultrakalte Temperaturen zu verwenden. Um die Messdaten zu ermitteln, nutzen sie die Quantenzustände, den Spin oder auch Eigen-Drehimpuls des Atoms genannt. Damit haben sie die Temperatur eines ultrakalten Gases und das Magnetfeld gemessen. Das System zeichnet sich durch eine besonders hohe Empfindlichkeit aus. Solche Sensoren könnten künftig etwa zum Einsatz kommen, um Quantensysteme störungsfrei zu untersuchen.

Bei ihren Versuchen beobachten die Wissenschaftler um Professor Dr. Artur Widera, der zu Quantensystemen forscht, einzelne Cäsium-Atome in einem Rubidium-Gas, das bis nahe an den absoluten Nullpunkt abgekühlt ist – die Temperatur ist hier nur noch ein Milliardstel Bruchteil eines Grad über diesem Nullpunkt. In ihrer aktuellen Studie sind sie der Frage nachgegangen, ob sich die Spin-Zustände des Cäsium-Atoms nutzen lassen, um Informationen zu gewinnen. „Mit dem Begriff Spin bezeichnet man den Eigendreh-Impuls eines Atoms“, sagt Professor Widera von der Technischen Universität Kaiserslautern (TUK). „Beim Cäsium gibt es sieben verschiedene Möglichkeiten für diesen Spin.“ Im Fokus der Versuche stand die Temperatur des Gases.


Professor Dr. Artur Widera

Publikation:


Quentin Bouton, Jens Nettersheim, Daniel Adam, Felix Schmidt, Daniel Mayer, Tobias Lausch, Eberhard Tiemann, and Artur Widera
Single-Atom Quantum Probes for Ultracold Gases Boosted by Nonequilibrium Spin Dynamics
Phys. Rev. X 10, 011018 – Published 27 January 2020

DOI: 10.1103/PhysRevX.10.011018



Ist das einzelne Cäsium-Atom in das Rubidium-Gas eingebracht, kollidieren die Rubidium-Atome mit diesem. „Dabei kann Drehimpuls zwischen den Atomen ausgetauscht werden, bis sich ein Gleichgewicht des Spins einstellt“, erläutert Dr. Quentin Bouton, federführender Wissenschaftler und Erstautor der Studie. Den Spin des einzelnen Atoms messen die Forscher und können auf diese Weise die Temperatur ermitteln. Dass diese Methode funktioniert, zeigt ein Vergleich mit herkömmlichen Messmethoden, bei denen die Physiker denselben Temperaturwert erhalten.

Das Besondere an der Studie war die hohe Empfindlichkeit bei der Messung. Bei einer typischen Messung wird der Sensor mit dem kalten Gas in Kontakt gebracht und gewartet, bis sich ein Gleichgewicht eingestellt hat. „Für Quantensensoren existiert im Gleichgewicht eigentlich eine fundamentale Grenze der Empfindlichkeit. Wir haben aber bereits im Vorfeld Informationen über die Wechselwirkungen zwischen Cäsium und Rubidium mit einfließen lassen, sodass wir nicht warten mussten, bis das Atom im Gleichgewicht mit dem Rubidium-Gas war“, fährt Bouton fort.

Dadurch besitzt das Messsystem der Kaiserslauterer Forscher eine rund zehn Mal höhere Empfindlichkeit, als es die fundamentale Quantengrenze verlangt. „Wir haben nur drei Spin-Drehungen, das heißt drei atomare Kollisionen, benötigt, um zu einem Ergebnis zu kommen“, so Bouton weiter. Somit ist auch die Störung des Rubidium-Gases auf nur drei Quanten begrenzt. Das ist ein wichtiger Schritt hin zu einer möglichst störungsarmen Messung von empfindlichen Quantensystemen, die für zukünftige Anwendungen in der Quantentechnologie interessant sind.

„Wir haben hier erstmals ein einzelnes Atom als Sensor verwendet, der Quanteninformationen nutzt und dabei deutlich besser ist als ein klassischer Sensor“, betont Widera. Auch mit Magnetfeldern haben die Physiker diesen Versuch durchgeführt und haben die magnetischen Zustände erfasst. Ihr System als empfindlicher Sensor eignet sich beispielsweise, um fragile Quantensysteme fast zerstörungsfrei zu untersuchen.

Bei ihren Versuchen beobachten die Wissenschaftler um Professor Dr. Artur Widera, der zu Quantensystemen forscht, einzelne Cäsium-Atome in einem Rubidium-Gas, das bis nahe an den absoluten Nullpunkt abgekühlt ist – die Temperatur ist hier nur noch ein Milliardstel Bruchteil eines Grad über diesem Nullpunkt. In ihrer aktuellen Studie sind sie der Frage nachgegangen, ob sich die Spin-Zustände des Cäsium-Atoms nutzen lassen, um Informationen zu gewinnen. „Mit dem Begriff Spin bezeichnet man den Eigendreh-Impuls eines Atoms“, sagt Professor Widera von der Technischen Universität Kaiserslautern (TUK). „Beim Cäsium gibt es sieben verschiedene Möglichkeiten für diesen Spin.“ Im Fokus der Versuche stand die Temperatur des Gases.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

Mehr zu den Themen

19.04.2019
Thermodynamik

Physikalische Zauberei ermöglicht Kühlen ohne Energiezufuhr
Physiker der Universität Zürich haben eine verblüffend einfache Anordnung entwickelt, bei der Wärme ohne Energiezufuhr von aussen zeitweise von einem kälteren zu einem wärmeren Objekt fliesst.
27.06.2018
Teilchenphysik | Thermodynamik

Studie erlaubt Einblick in Physik des Higgs-Teilchens
Physikern der Universität Bonn ist es gelungen, ein supraleitendes Gas in einen exotischen Zustand zu versetzen.
27.07.2021
Monde | Thermodynamik

Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed.
22.10.2020
Optik | Teilchenphysik | Thermodynamik

Auflösungsweltrekord in der Kryo-Elektronenmikroskopie
Eine entscheidende Auflösungsgrenze in der Kryo-Elektronenmikroskopie ist geknackt.
02.05.2019
Thermodynamik | Festkörperphysik

Beton beim Explodieren beobachtet
Auch wenn Beton nicht brennbar ist, kann es bei Tunnelbränden gefährlich werden: Hochleistungsbeton kann bei hohen Temperaturen explodieren.
20.07.2021
Festkörperphysik | Thermodynamik

Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
14.01.2021
Thermodynamik

Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
17.12.2018
Teilchenphysik | Thermodynamik

Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
Dass Materie in drei verschiedenen Aggregatzuständen oder Phasen vorkommt (fest, flüssig und gasförmig), wissen wir aus der Schulzeit.
18.12.2020
Thermodynamik

Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
15.11.2022
Thermodynamik

Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.
29.05.2018
Teilchenphysik | Thermodynamik

Wasser ist nicht gleich Wasser
Wassermoleküle kommen in zwei verschiedenen Formen mit fast identischen physikalischen Eigenschaften vor.
08.02.2019
Thermodynamik | Biophysik

Kryo-Kraftspektroskopie zeigt mechanische Eigenschaften von DNA-Bauteilen auf
Die Theorie hamburgischer Wissenschaftler zum polaritonisch verstärkten Energietransfer von Molekülen über weite Distanzen hinweg eröffnet neue Wege im chemischen Design und in der ‘spukhaften Chemie’.
18.12.2019
Thermodynamik | Plasmaphysik

Den Grundlagen der Thermodynamik auf der Spur
Kieler Physiker können in Komplexen Plasmen erstmals die kaum messbare Größe Entropie bestimmen.
26.04.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Terahertz-Spektroskopie vertieft Einblick in Halbleiter
Billiardstoß oder Auffahrunfall?
20.11.2019
Teleskope | Elektrodynamik | Thermodynamik

Gammablitz mit Ultra-Strahlkraft: MAGIC-Teleskope beobachten bisher stärksten Gammastrahlen-Ausbruch
Der Gammablitz, den die beiden MAGIC-Teleskope am 14.
04.02.2020
Atomphysik | Thermodynamik

Studie: Einzelnes Atom als Messsonde nutzt erstmals Quanteninformationen
Sensoren erfassen bestimmte Parameter wie Temperatur und Luftdruck in ihrer Umgebung.
20.03.2019
Thermodynamik

Saarbrücker Sensorsystem misst Feuchtigkeit zuverlässig auch in heißen Öfen
Es behält volle Kontrolle über Trocknungsprozesse in Industrie-Öfen und misst zuverlässig den Feuchtegehalt der Luft – selbst bei hohen Temperaturen und Störfaktoren wie ausgedünsteten Substanzen: Professor Andreas Schütze, Projektleiter Tilman Sauerwald und ihr Forscherteam von der Universität des Saarlandes haben mit Partner-Unternehmen ein Sensorsystem entwickelt, das Trocknungs-, Back- und Garprozesse besonders präzise überwacht.
18.10.2022
Atomphysik | Thermodynamik | Quantenoptik

Lichtgetriebene Molekülschaukel
Chemiker und Physiker haben mit ultrakurzen Laserpulsen die Atome von Molekülen in Schwingung versetzt und die dabei stattfindende Dynamik der Energieübertragung analysiert.
27.02.2019
Galaxien | Teilchenphysik | Thermodynamik

Neue Studie könnte Verteilung der Dunklen Materie in Galaxien erklären
Dunkle-Materie-Teilchen können sich nur dann aneinander streuen, wenn sie die richtige Energie haben.
21.02.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Wie man Wärmeleitung einfriert
An der TU Wien wurde ein physikalischer Effekt entdeckt, der elektrisch leitende Materialien mit extrem niedriger Wärmeleitfähigkeit ermöglicht.
14.05.2018
Quantenoptik | Thermodynamik

Schnellster Wasserkocher der Welt – 100.000 Grad in 75 billiardstel Sekunden
Forscher erzeugen und untersuchen exotischen Zustand von Wasser per Röntgenlaser.
10.01.2020
Sterne | Kernphysik | Thermodynamik

Explosion oder Kollaps: Experiment über Beta-Zerfall wirft Licht auf das Schicksal von Sternen mittlerer Masse
Einer Gruppe von Wissenschaftlerinnen und Wissenschaftlern, unter ihnen mehrere vom GSI Helmholtzzentrum für Schwerionenforschung sowie der Technischen Universität Darmstadt, ist es gelungen, experimentell die Bedingungen von Kernprozessen in Materie, die zehn Millionen mal dichter und 25-mal heißer ist als im Mittelpunkt unserer Sonne, zu bestimmen.
02.02.2022
Astrophysik | Thermodynamik

Die frühe Abkühlung unseres Universums
Astrophysiker haben eine neue Methode zur Messung der Temperatur der kosmischen Hintergrundstrahlung nur 880 Millionen Jahre nach dem Urknall entwickelt.
31.08.2021
Quantenoptik | Thermodynamik

Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
22.01.2021
Festkörperphysik | Quantenoptik | Thermodynamik

Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
09.08.2019
Sterne | Atomphysik | Thermodynamik

800 Milliarden Grad Celsius: Temperaturen wie in Sternenkollisionen im Labor gemessen
Sie gehören zu den heißesten Momenten im kosmischen Geschehen: die Kollisionen von Neutronensternen im Universum, bei denen chemische Elemente gebildet werden.
02.05.2018
Teilchenphysik | Thermodynamik

Mehr als nur Zuschauer
Physikteam der Uni Kiel erforscht Einfluss von Ionen auf atomare Bewegung.
20.09.2018
Quantenphysik | Thermodynamik

Kernphysiker stellen Beobachtungen zum quantenchromodynamischen Phasenübergang vor
Dies ist eine gemeinsame Pressemitteilung der Universitäten Münster und Heidelberg sowie des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt.
02.09.2022
Elektrodynamik | Festkörperphysik | Quantenphysik | Thermodynamik

Neues Fell für Schrödingers Katze
Ob Magnete oder Supraleiter: Materialien sind für ihre Eigenschaften bekannt, doch unter extremen Bedingungen können sich solche Eigenschaften spontan ändern.
16.09.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Womit werden wir morgen kühlen - Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung
Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden als für das Heizen.
18.04.2018
Thermodynamik

Forscher entdecken neue Form von Eis
Eis ist nicht gleich Eis.
06.03.2019
Milchstraße | Thermodynamik | Astrophysik

Milchstraße und darüber hinaus: Himmelsdurchmusterung der nächsten Generation
Das 4-Meter spektroskopische Multi-Objekt-Teleskop 4MOST wird als größte Beobachtungseinrichtung ihrer Art den aktuell drängendsten astronomischen Fragen der Galaktischen Archäologie, der Hochenergie-Astrophysik, der Evolution der Galaxien sowie der Kosmologie nachgehen.
09.05.2018
Festkörperphysik | Thermodynamik

Vorsicht, Glatteis!
Gleiten auf Eis oder Schnee ist viel einfacher als das Gleiten auf den meisten anderen Oberflächen, dies ist allgemein bekannt. Aber warum ist die Eisoberfläche rutschig?
18.07.2019
Kernphysik | Thermodynamik

Chemie des kosmologischen Dunklen Zeitalters im Labor untersucht
Neue Messungen ergeben eine dramatisch höhere Häufigkeit von Heliumhydrid-Ionen im frühen Universum.
22.08.2019
Sterne | Thermodynamik | Astrophysik

Experiment HADES simuliert die Kollision und das Verschmelzen von Sternen: 800 Milliarden Grad in der kosmischen Küche
Sie gehören zu den spektakulärsten Ereignissen im Universum: Kollisionen von Neutronensternen.
26.02.2019
Thermodynamik | Festkörperphysik

Energiereiche Festkörperbatterie: Hohe Energiedichte mit Lithium-Anode und Hybridelektrolyt
Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt.
11.02.2019
Thermodynamik

Halte Kontakt, nutze das Vakuum! Wie Spiegel die Chemie und Physik beeinflussen können
Symmetrien sind in der Natur allgegenwärtig – etwa die Spiegelsymmetrie der Hände oder die sechszählige Symmetrie einer Schneeflocke.
20.02.2019
Atomphysik | Thermodynamik

Wasser ist homogener als gedacht
Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht.
13.06.2018
Thermodynamik | Biophysik

Der Blick durchs Schlüsselloch
Krankheitsepidemien, Börsencrashs und neuronale Netzwerke im Gehirn können dank Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation zukünftig besser untersucht werden.
05.11.2021
Teilchenphysik | Thermodynamik

Elektronen-Familie erzeugt bisher unbekannten Aggregatzustand
Ein internationales Forschungsteam des Exzellenzclusters ct.
26.10.2020
Monde | Thermodynamik

Fliegende Sternwarte SOFIA entdeckt molekulares Wasser auf dem Mond
Die fliegende Sternwarte SOFIA (Stratosphären Observatorium Für Infrarot-Astronomie) hat erstmals den direkten eindeutigen Nachweis von Wassermolekülen auf dem Mond außerhalb des permanenten Schattens an den Mondpolen erbracht.
05.01.2021
Thermodynamik

Weder flüssig noch fest
Entdeckung von flüssigem Glas wirft Licht auf das alte wissenschaftliche Problem des Glasübergangs: Ein interdisziplinäres Forschungsteam der Universität Konstanz entdeckt einen neuen Aggregatzustand, flüssiges Glas, mit bisher unbekannten Strukturelementen – neue Erkenntnisse über die Eigenschaften von Glas und seine Übergänge.
30.08.2021
Quantenphysik | Thermodynamik

Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
29.08.2018
Thermodynamik

Wie Wolken auch bei niedrigen Temperaturen entstehen
Kleine, mit freiem Auge nicht sichtbare Aerosolpartikel in der Luft ermöglichen die Entstehung von Wolken.
22.09.2022
Festkörperphysik | Thermodynamik

Molekülschwingungen schärfer denn je messbar!
Mit Rastertunnelmikroskopen lassen sich zwar einzelne Moleküle abbilden, ihre Schwingungen waren damit bisher aber nur schwer detektierbar.
07.03.2019
Elektrodynamik | Thermodynamik

Ein Thermofühler für magnetische Bits
Neues Konzept zur energieeffizienten Datenverarbeitung.
08.08.2018
Festkörperphysik | Thermodynamik

Eis unter Hochdruck: Bayreuther Forscher beobachten erstmals den Strukturwandel von Eiskristallen
Eiswürfel im Kühlschrank oder Eiszapfen an der Dachrinne sind vertraute Alltagsbeispiele für gefrorenes Wasser.
04.07.2019
Thermodynamik | Festkörperphysik

Abstimmung der Energieniveaus von organischen Halbleitern
Physiker des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Tübingen, Potsdam und Mainz zeigen, wie elektronische Energien in organischen Halbleiterfilmen durch elektrostatische Kräfte eingestellt werden können.
08.05.2018
Teilchenphysik | Thermodynamik

Ultra-kalte Atomwolken bringen bestehende Theorien ins Wanken
Experimente mit ultra-kalten Atomen brachten an der TU Wien unerwartete Ergebnisse: Atomwolken, die miteinander gekoppelt sind, synchronisieren ihre Schwingung in Millisekunden – mit bestehenden Theorien ist das nicht erklärbar.
26.06.2018
Quantenoptik | Thermodynamik

Neue Form von Chaos entdeckt
Die Entdeckung eines neuen Typs von Chaos durch Chemnitzer Physiker findet weltweite Beachtung – Potentielle Anwendung für Kommunikationstechnik, Kryptographie und Datenverarbeitung.