Teleskop zur Erforschung von Objekten höchster Dichte im Universum

Teleskop zur Erforschung von Objekten höchster Dichte im Universum



Physik-News vom 06.05.2021

Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen. Das Programm mit dem Namen „Relativistic and Binary Pulsars“ (RelBin) und die ersten Ergebnisse werden in einem heute veröffentlichten Artikel in der Fachzeitschrift „Monthly Notices of the Royal Astronomical Society“ beschrieben.

Die allgemeine Relativitätstheorie von Albert Einstein gehört zu den bestuntersuchten Theorien der Physik und stellt die derzeit beste Beschreibung der Gravitation dar. Dennoch bleiben Fragen wie die nach der Natur der „Dunklen Materie“ oder der „Dunklen Energie“ unbeantwortet, und mögliche Abweichungen von der allgemeinen Relativitätstheorie werden nach wie vor untersucht. Hier bietet die Erforschung von Binärpulsaren, Sternen extrem hoher Dichte, die sowohl als kosmische Leuchttürme als auch als präzise Uhren fungieren, einzigartige Einblicke, die andere Experimente, etwa mit Gravitationswellendetektoren oder Satellitenmissionen, ergänzen.


Radioantennen des MeerKAT-Teleskopnetzwerks in der Karoo-Halbwüste in Südafrika unter dem nächtlichen Sternenhimmel.

Publikation:


M. Kramer et al.
The Relativistic Binary Programme on MeerKAT: Science objectives and first results
Monthly Notices of the Royal Astronomical Society (MNRAS), Volume 504, Issue 2, June 2021, Pages 2094–2114

DOI: 10.1093/mnras/stab375

arXiv Preprint

Pulsare sind nur etwa 24 km groß und bestehen hauptsächlich aus Neutronen. Mit Massen bis etwa zweifacher Sonnenmasse sind sie die extremsten Objekte im beobachtbaren Universum. Durch die Verfolgung ihrer Bewegung um einen möglichen Begleiter, einen anderen Neutronenstern oder einen größeren „Weißen Zwerg“, den freigelegten Kern eines gewöhnlichen Sterns am Ende seines Lebens, können Radioteleskope wie MeerKAT in Südafrika ihre Position in der jeweiligen Umlaufbahn auf nur etwa 30 Meter genau bestimmen! Dies kann eine Reihe von relativistischen Effekten in der Umlaufbewegung aufdecken, wie die Emission von Gravitationswellen oder die Auswirkungen auf die Ausbreitung von Licht in ihren starken Gravitationsfeldern.

Das MeerKAT-Teleskop ist ein hervorragendes neues Radioteleskop, das vom „South African Radio Astronomy Observatory“ (SARAO) gebaut und betrieben wird. Es bietet eine hohe Empfindlichkeit durch die Kombination der Signale von 64 einzelnen 13-m-Antennen. Im Rahmen des „Large Survey Proposals“ MeerTime, das von Prof. Matthew Bailes von der Swinburne-Universität in Australien geleitet wird, war das Projekt „Relativistic and Binary Pulsars“ (RelBin) unter der Leitung von Prof. Michael Kramer, Direktor am MPIfR, Bonn, und Prof. Ingrid Stairs, University of British Columbia in Kanada, das am besten bewertete Wissenschaftsprogramm, das für MeerKAT vorgeschlagen wurde. Das internationale RelBin-Team mit Kollegen aus Afrika, Australien, Europa und Nordamerika präsentiert nun die ersten Ergebnisse aus diesem Programm.


PSR J0737-3039A: Das Doppelpulsar-System besteht aus zwei Pulsaren (mit Rotationsperioden von 23 ms und 2,8 s), die sich gegenseitig umkreisen. Der Doppelpulsar ist eines der Beobachtungsobjekte, die im Rahmen des RelBin-Programms untersucht werden.

RelBin konzentriert sich in erster Linie auf die Beobachtung von relativistischen Effekten in Pulsar-Binärsystemen, um Präzisionsmessungen der Massen von Neutronensternen und Tests von Gravitationstheorien zu ermöglichen. Auch wenn detaillierte Ergebnisse erst nach vielen weiteren Monaten der Beobachtung zu erwarten sind, kann das Team bereits jetzt zeigen, dass die Beobachtungen mit MeerKAT die vorhandenen Daten von anderen Teleskopen typischerweise um einen Faktor 2-3, manchmal sogar um eine ganze Größenordnung, verbessern. Michael Kramer ist begeistert: „Die Leistung von MeerKAT ist besser als wir erwartet haben! Wir können jetzt Experimente durchführen, die mit anderen Teleskopen nicht nur etwa 10 Jahre gedauert hätten, sondern wir können sie auch viel präziser durchführen.“

Zu den untersuchten Quellen gehört das berühmte Doppelpulsar-System (Abb. 1), in dem sich zwei Pulsare in nur 2,5 Stunden umkreisen. Die Co-Leiterin des Projekts, Ingrid Stairs, erklärt: „Wir können dieses System jetzt viel genauer untersuchen. Das System ändert seine Bahnkonfiguration aufgrund relativistischer Effekte ständig, und wir können diese Effekte für Tests der allgemeinen Relativitätstheorie sehr genau verfolgen.“

RelBin ist die bisher größte Studie von relativistischen Doppelpulsaren und zielt auch darauf ab, die Zahl präzise gemessener Massen von Neutronensternen zu erhöhen. Dr. Vivek Venkatraman Krishnan, Post-Doktorand am MPIfR und Mitorganisator der Arbeit, bringt dies auf den Punkt: „Die Masse von Neutronensternen gibt Aufschluss darüber, wie dicht wir die Materie im Universum packen können. Mit MeerKAT-Beobachtungen von relativistischen Effekten in der Bewegung von Neutronensternen in Binärsystemen können wir ihre Massen mit einer Genauigkeit von etwa 1% oder besser messen und damit möglicherweise eine Reihe von Modellen, die von Kernphysikern vorgeschlagen wurden, beweisen oder ausschließen.“

Das Team von Matthew Bailes an der Swinburne University of Technology hat die Supercomputer-Infrastruktur entwickelt, die täglich fast 300 Millionen Megabyte an Input vom Teleskop verdaut und in wissenschaftlich verwertbare Daten umwandelt. „MeerKAT ist ein perfektes Beispiel für ein global umfassendes Wissenschaftsprojekt, bei dem Experten aus der ganzen Welt zusammenkommen, um ein fantastisches Instrument zu bauen, das die Einsteinschen Gesetze auf Herz und Nieren prüft“, sagt er.

Das von SARAO betriebene MeerKAT-Teleskopnetzwerk ist das größte Radioteleskop der südlichen Hemisphäre und eines von zwei Vorläuferinstrumenten des SKA-Projekts, aufgebaut in Südafrika. Das in der Karoo-Wüste gelegene Radioteleskop wird demnächst von der Max-Planck-Gesellschaft in Zusammenarbeit mit SARAO und dem INAF in Italien um eine Anzahl zusätzlicher Reflektorantennen erweitert. Dieses Projekt unter der Bezeichnung "MeerKAT+" wird die Fähigkeiten von MeerKAT verbessern. Das Teleskop soll später schrittweise in das Mid-Teleskop des SKAO integriert werden. Die ersten wissenschaftlichen Beobachtungen mit dem verbesserten MeerKAT-Teleskop könnten bereits im Jahr 2023 beginnen, noch während der Testphase des Teleskops.



Diese Newsmeldung wurde mit Material des Max-Planck-Instituts für Radioastronomie via Informationsdienst Wissenschaft erstellt.


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte