Tiefer Blick in die dipolare Quantenwelt
Physik-News vom 05.11.2023
Zwei weltweit führende Forschungsgruppen haben ihre Expertise gebündelt und ein ultragenaues Quantengas-Mikroskop für die Beobachtung magnetischer Quantenmaterie entwickelt. Mit diesem können komplexe, dipolare Quantenzustände beobachtet werden, die Ergebnis der Wechselwirkung der Teilchen sind, wie die Wissenschaftler in der Fachzeitschrift Nature berichten.
Magnetische Atome bilden das Herzstück der Forschung von Francesca Ferlaino zu Quantenmaterie. Die Teilchen verfügen über unvergleichliche Eigenschaften für Quantenexperimente. Am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften und dem Institut für Experimentalphysik der Universität Innsbruck erforscht die Experimentalphysikerin mit ihrem Team Materiezustände, die bis anhin nicht untersucht werden konnten.
Publikation:
Su, L., Douglas, A., Szurek, M. et al.
Dipolar quantum solids emerging in a Hubbard quantum simulator
Nature 622, 724–729 (2023)
DOI: 10.1038/s41586-023-06614-3
So haben sie 2012 das erste Bose-Einstein-Kondensat aus Erbium realisiert und 2019 als eines von drei Teams erstmals suprasolide Zustände in ultrakalten Quantengasen aus magnetischen Atomen beobachtet. Das Team des aus Deutschland stammenden Physikers Markus Greiner leistet Pionierarbeit bei der Entwicklung von optischen Techniken zur direkten Beobachtung von einzelnen Atomen. An der Harvard Universität haben die Physiker mit Hilfe hochauflösender Mikroskopie viele exotische Phänomene in stark korrelierten ultrakalten Quantengasen sichtbar gemacht, wie zum Beispiel anti-ferromagnetische Phasen im Jahr 2017.
Publikation:
Sohmen, Manfred J. Mark, Markus Greiner, Francesca Ferlaino
A ship-in-a-bottle quantum gas microscope for magnetic mixtures
arXiv: 2306.05404
Vor einigen Jahren hatten Ferlaino und Greiner beschlossen, ihre Expertise zu bündeln und gemeinsam ein Quantengas-Mikroskop für magnetische Atome zu bauen, mit dem Ziel neue Phänomene zugänglich zu machen. „Durch den stark magnetischen Charakter beeinflussen sich die Teilchen über viel größere Distanzen als nicht magnetische Teilchen und ihr Einfluss wirkt immer in eine bestimmte Richtung“, erklärt Francesca Ferlaino. „Aufgrund der Eigenschaften der Teilchen können wir in diesen Quantengasen Wechselwirkungen beobachten, die in herkömmlichen Experimenten nicht zu sehen sind. Dies bietet uns völlig neue Einblicke in die Funktionsweise von Festkörpern.“
Neue Quantenfestkörper beobachtet
In jahrelanger Kleinarbeit haben die Forschungsteams gemeinsam das neue Experiment entwickelt und zwei Mikroskope in Österreich und den USA aufgebaut. „Teile der Apparatur haben wir hier in Innsbruck hergestellt“, erzählt Ferlaino. Heute steht sowohl in Harvard als auch in Innsbruck ein Quantengas-Mikroskop für dipolare Quantengase. Es erzeugt mit Laserstrahlen ein Lichtgitter, in dem sich auf extrem tiefe Temperaturen abgekühlte Erbium-Atome verteilen. Mit Magnetfeldern lassen sich die Teilchen unterschiedlich ausrichten und so die Wechselwirkungen steuern. Die Linse des Mikroskops befindet sich im Inneren einer gläsernen Vakuumzelle, und der Aufbau erinnert so an ein Schiff in einer Flasche.
Die Gruppe um Markus Greiner präsentiert nun in der Fachzeitschrift Nature erste Ergebnisse dieser Arbeiten. Den Wissenschaftlern ist es gelungen zu zeigen, wie durch die Manipulation der Wechselwirkungen in der Apparatur aus supraflüssigen Phasen verschiedene dipolare Quantenfestkörper erzeugt werden können. Diese zeigen sich im Mikroskop als unterschiedliche Muster: Querstreifen, Schachbrettmuster oder diagonale Streifen. „Hier bestimmt die weitreichende, gerichtete Wechselwirkung der Teilchen die Eigenschaften der Materiewolke, die ordnende Kraft des Lichtkristalls wird gebrochen“, erklärt Francesca Ferlaino.
Grundlage für diesen Durchbruch war die langjährige, enge Zusammenarbeit zweiter experimenteller Forschungsgruppen über einen Ozean hinweg. Die gemeinsame Arbeit ermöglicht nun Simulationen von Quantensystemen mit weitreichenden und gerichteten Wechselwirkungen und schafft so die Basis für neue Erkenntnisse zu den Eigenschaften von Quantenmaterie. „Interessant ist das für alle Phänomene, die von diesen Wechselwirkungen dominiert werden, wie etwa der Ferromagnetismus“, zeigt sich Ferlaino begeistert.
Diese Newsmeldung wurde mit Material der Universität Innsbruck via Informationsdienst Wissenschaft erstellt.