Zepto-Sekunden: Neuer Weltrekord in Kurzzeit-Messung
Physik-News vom 16.10.2020
Im weltweiten Wettlauf um die Messung der kürzesten Zeitspanne liegen jetzt Physikerinnen und Physiker der Goethe-Universität Frankfurt vorn. Zusammen mit Kollegen des Beschleunigerzentrums DESY in Hamburg und des Fritz-Haber-Instituts in Berlin haben sie erstmals einen Vorgang vermessen, der im Bereich von Zeptosekunden liegt: die Ausbreitung von Licht innerhalb eines Moleküls. Eine Zeptosekunde ist ein Billionstel einer Milliardstel Sekunde (10 hoch minus 21 Sekunden).
Für die Vermessung der Geschwindigkeit, in der Moleküle schwingen, erhielt der ägyptische Chemiker Ahmed Zewail 1999 den Nobelpreis. Mithilfe von ultrakurzen Laserblitzen begründete er die Femtochemie: Wenn sich chemische Bindungen bilden und zerbrechen, geschieht das im Bereich von Femtosekunden. Eine Femtosekunde entspricht 0,000000000000001 Sekunden oder 10 hoch minus 15 Sekunden.
Publikation:
Sven Grundmann, Daniel Trabert, Kilian Fehre, Nico Strenger, Andreas Pier, Leon Kaiser, Max Kircher, Miriam Weller, Sebastian Eckart, Lothar Ph. H. Schmidt, Florian Trinter, Till Jahnke, Markus S. Schöffler, Reinhard Dörner
Zeptosecond Birth Time Delay in Molecular Photoionization
Science 16 Oct 2020: Vol. 370, Issue 6514, pp. 339-341
Atomphysiker der Goethe-Universität um Prof. Reinhard Dörner haben jetzt erstmals einen Vorgang untersucht, der noch um Größenordnungen kürzer ist als Femtosekunden: Sie vermaßen, wie lange es dauert, bis ein Lichtteilchen (Photon) ein Wasserstoffmolekül durchquert hat, nämlich etwa 247 Zeptosekunden bei der durchschnittlichen Bindungslänge des Moleküls. Dies ist die kürzeste Zeitspanne, die bisher gemessen werden konnte.
Die Zeitmessung nahmen die Wissenschaftler an Wasserstoff-Molekülen (H2) vor, die sie mit Röntgenlicht der Röntgenstrahlungsquelle PETRA III am Hamburger Beschleunigerzentrum DESY bestrahlten. Die Energie der Röntgenstrahlen stellten die Forscher so ein, dass ein Photon genügte, um beide Elektronen kurz hintereinander aus dem Wasserstoff-Molekül herauszuschlagen.
Elektronen verhalten sich gleichzeitig wie Teilchen und Wellen, und so entstanden beim Herausschlagen des ersten Elektrons kurz hintereinander erst bei dem einen und dann bei dem zweiten Atom des Wasserstoffmoleküle Elektronenwellen, die sich überlagerten. Dabei wirkte das Photon wie ein flacher Kieselstein, den man zweimal über das Wasser hüpfen lässt: Die Wellen der ersten und zweiten Wasserberührung löschen sich gegenseitig aus, wo ein Wellental auf einen Wellenberg trifft: Es entsteht ein sogenanntes Interferenzmuster.
Das Interferenzmuster des ersten herausgeschlagenen Elektrons vermaßen die Wissenschaftler mit dem COLTRIMS-Reaktionsmikroskop, das Dörner mitentwickelt hat und das ultraschnelle Reaktionsprozesse von Atomen und Molekülen sichtbar machen kann. Gleichzeitig mit dem Interferenzmuster konnte mit dem COLTRIMS-Reaktionsmikroskop bestimmt werden, in welcher Orientierung sich das Wasserstoff-Molekül befunden hatte. Hier machten es sich die Forscher zunutze, dass das zweite Elektron ebenfalls das Wasserstoffmolekül verließ und so die verbliebenen Wasserstoffkerne auseinanderflogen und detektiert werden konnten.
„Da wir die räumliche Orientierung des Wasserstoffmoleküls kannten, konnten wir aus der Interferenz der beiden Elektronenwellen sehr genau errechnen, wann das Photon das erste und wann es das zweite Wasserstoffatom erreicht hatte“, erklärt Sven Grundmann, auf dessen Doktorarbeit der wissenschaftliche Aufsatz in Science beruht. „Und das sind bis zu 247 Zeptosekunden, je nachdem, wie weit die beiden Atome im Molekül gerade aus Sicht des Lichts voneinander entfernt waren.“
Prof. Reinhard Dörner erläutert: „Was wir jetzt erstmals beobachten konnten ist, dass die Elektronenhülle in einem Molekül nicht überall gleichzeitig auf Licht reagiert. Die Zeitverzögerung kommt dadurch zustande, dass sich die Information im Moleküle eben nur mit Lichtgeschwindigkeit ausbreitet. Damit haben wir unsere COLTRIMS-Technologie um eine weitere Anwendung erweitert.“
Diese Newsmeldung wurde mit Material der Goethe-Universität Frankfurt am Main via Informationsdienst Wissenschaft erstellt.