Kristallographie: Unterschied zwischen den Versionen

Kristallographie: Unterschied zwischen den Versionen

imported>Consetetur
K (→‎Literatur: Klammerfehler)
 
imported>Acky69
K (→‎Geschichte der Kristallographie: Kap.überschrift straffer / Redundanz raus)
 
Zeile 1: Zeile 1:
Die '''Kristallographie''' (alternative Schreibung '''Kristallografie''') oder '''Kristallkunde'''  ist die Wissenschaft von den [[Kristall]]en, ihrer Struktur, Entstehung oder Herstellung und ihrer Eigenschaften und Anwendungsmöglichkeiten.
Die '''Kristallographie''' (alternative Schreibung '''Kristallografie''') oder '''Kristallkunde'''  ist die Wissenschaft von den [[Kristall]]en, ihrer Struktur, Entstehung oder Herstellung und ihrer Eigenschaften und Anwendungsmöglichkeiten.


== Geschichte der Kristallographie ==
== Geschichte ==
 
Erste Ansätze zu einer systematischen Erfassung von Mineralien finden sich bei [[Theophrastos von Eresos]] (371–287 v. Chr.) und speziell der Kristalle im Werk ''[[Naturalis historia]]'' von [[Plinius der Ältere|Plinius dem Älteren]] (23/24–79 n. Chr.), der beispielsweise den oktaedrischen [[Kristallhabitus]] und die extreme Härte von [[Diamant]]en beschreibt. In seinem 1546 erschienenen Buch ''De natura fossilium'' teilt [[Georgius Agricola]] Minerale nach ihren physikalischen Eigenschaften ein und kommentiert deren geometrische Formen. [[Johannes Kepler]] gelangte bei seiner Analyse des Aufbaus der sechseckigen Schneeflocken in seiner Schrift ''Strena seu de nive sexangula'' 1611 zur sogenannten [[Keplersche Vermutung|Keplerschen Vermutung]], die bestmögliche Kugelpackungen beinhaltet.
Erste Ansätze zu einer systematischen Erfassung von Mineralien finden sich bei [[Theophrastos von Eresos]] (371-287 v. Chr.) und speziell der Kristalle im Werk ''[[Naturalis historia]]'' von [[Plinius der Ältere|Plinius dem Älteren]] (26–79 n. Chr.), der beispielsweise den oktaedrischen [[Kristallhabitus]] und die extreme Härte von [[Diamant]]en beschreibt. In seinem 1546 erschienenen Buch ''De natura fossilium'' teilt [[Georgius Agricola]] Minerale nach ihren physikalischen Eigenschaften ein und kommentiert deren geometrische Formen. [[Johannes Kepler]] gelangte bei seiner Analyse des Aufbaus der sechseckigen Schneeflocken in seiner Schrift ''Strena seu de nive sexangula'' 1611 zur sogenannten [[Keplersche Vermutung|Keplerschen Vermutung]], die bestmögliche Kugelpackungen beinhaltet.


Die ersten wissenschaftlichen Untersuchungen an Kristallen betrafen ihre äußere Form und ihre geometrischen Eigenschaften. So entdeckte [[Nicolaus Steno]] 1669 das Gesetz der [[Winkelkonstanz]], dem zufolge die [[Winkel]] zwischen kristallographisch gleichen Flächen desselben Minerals stets gleich groß sind.<ref>Hans Seifert: ''Nicolaus Steno als Bahnbrecher der modernen Kristallographie.'' In: ''Sudhoffs Archiv'' 38, 1954, S. 29–47.</ref> [[René-Just Haüy]] formulierte 1801 das „[[Rationalitätsgesetz|Dekreszenzgesetz]]“ und das „Symmetriegesetz“; er war der erste, der den Begriff der [[Symmetrie (Geometrie)|Symmetrie]] in einer formalen Definition in die Kristallographie einführte.
Die ersten wissenschaftlichen Untersuchungen an Kristallen betrafen ihre äußere Form und ihre geometrischen Eigenschaften. So entdeckte [[Nicolaus Steno]] 1669 das Gesetz der [[Winkelkonstanz]], dem zufolge die [[Winkel]] zwischen kristallographisch gleichen Flächen desselben Minerals stets gleich groß sind.<ref>Hans Seifert: ''Nicolaus Steno als Bahnbrecher der modernen Kristallographie.'' In: ''Sudhoffs Archiv'' 38, 1954, S. 29–47.</ref> [[René-Just Haüy]] formulierte 1801 das „[[Rationalitätsgesetz|Dekreszenzgesetz]]“ und das „Symmetriegesetz“; er war der erste, der den Begriff der [[Symmetrie (Geometrie)|Symmetrie]] in einer formalen Definition in die Kristallographie einführte.
Zeile 9: Zeile 8:
Die Mitte des 19. Jahrhunderts entwickelte [[Gruppentheorie]] wurde von den Kristallographen schnell übernommen. Nach Vorarbeiten [[Leonhard Sohncke]]s ([[Sohncke-Raumgruppe]]n, 1876) gelang [[Arthur Moritz Schoenflies]] und [[Jewgraf Stepanowitsch Fjodorow]] 1890/91 die Ableitung aller 230 kristallographischen [[Raumgruppe]]n.
Die Mitte des 19. Jahrhunderts entwickelte [[Gruppentheorie]] wurde von den Kristallographen schnell übernommen. Nach Vorarbeiten [[Leonhard Sohncke]]s ([[Sohncke-Raumgruppe]]n, 1876) gelang [[Arthur Moritz Schoenflies]] und [[Jewgraf Stepanowitsch Fjodorow]] 1890/91 die Ableitung aller 230 kristallographischen [[Raumgruppe]]n.


Der Beweis, dass Kristalle dreidimensional periodisch aufgebaut sind, gelang [[Max von Laue]] mit Hilfe der [[Röntgenbeugung]] 1912. Diese Methode ermöglichte in den folgenden Jahrzehnten die Aufklärung der Kristallstruktur der [[Desoxyribonukleinsäure]] durch [[Rosalind Franklin]], [[James Watson]] und [[Francis Crick]] (1953) und der des [[Insulin]]s durch [[Dorothy Crowfoot Hodgkin]] (1969) sowie die Entdeckung von fünfzähligen Symmetrieachsen ([[Quasikristall]]) in einer schnell abgekühlten Aluminium-Mangan [[Legierung]] durch [[Dan Shechtman]] und Mitarbeiter (1984).
Der Beweis, dass Kristalle dreidimensional periodisch aufgebaut sind, gelang [[Max von Laue]] mit Hilfe der [[Röntgenbeugung]] 1912. Die Bestimmung der Strukturen von einfachen anorganischen Kristallen wie [[Natriumchlorid]] (NaCl) konnte bald darauf von [[William Henry Bragg]] und [[William Lawrence Bragg]] durchgeführt werden. Diese Methode ermöglichte in den folgenden Jahrzehnten die Aufklärung der Kristallstruktur der [[Desoxyribonukleinsäure]] durch [[Rosalind Franklin]], [[James Watson]] und [[Francis Crick]] (1953) und der des [[Insulin]]s durch [[Dorothy Crowfoot Hodgkin]] (1969) sowie die Entdeckung von fünfzähligen Symmetrieachsen ([[Quasikristall]]) in einer schnell abgekühlten Aluminium-Mangan [[Legierung]] durch [[Dan Shechtman]] und Mitarbeiter (1984).


Das Jahr 2014 wurde von der [[Vereinte Nationen|UNO]] zum [[Internationales Jahr der Kristallographie|Internationalen Jahr der Kristallographie]] ausgerufen.<ref>[http://www.iycr2014.de/ Internationales Jahr der Kristallographie]</ref> Die Bedeutung der Kristallographie zeigt sich auch daran, dass für bahnbrechende Fortschritte in kristallographischen Techniken und daraus resultierenden Ergebnissen bis jetzt 29 Nobelpreise verliehen wurden.<ref>[http://www.iucr.org/people/nobel-prize International Union of CRYSTALLOGRAPHY]</ref>
Das Jahr 2014 wurde von der [[Vereinte Nationen|UNO]] zum [[Internationales Jahr der Kristallographie|Internationalen Jahr der Kristallographie]] ausgerufen.<ref>{{Webarchiv|url=http://www.iycr2014.de/ |wayback=20140326072256 |text=Internationales Jahr der Kristallographie |archiv-bot=2019-04-24 03:20:41 InternetArchiveBot }}</ref> Die Bedeutung der Kristallographie zeigt sich auch daran, dass für bahnbrechende Fortschritte in kristallographischen Techniken und daraus resultierenden Ergebnissen bis jetzt 29 Nobelpreise verliehen wurden.<ref>[http://www.iucr.org/people/nobel-prize International Union of CRYSTALLOGRAPHY]</ref>


== Untersuchungsgegenstand ==
== Untersuchungsgegenstand ==
 
Historisch gesehen ist die Kristallographie ein Teilgebiet der [[Mineralogie]], aus der sie entstanden ist. Kristalle können als Materialien Untersuchungsgegenstand der Forschung sein. In diesem Sinne ist die Kristallographie eine [[Materialwissenschaft]], die [[physik]]alische und [[Chemie|chemische]] Parameter von Kristallen bestimmt und die in ihnen auftretenden physikochemischen Prozesse untersucht. Die untersuchten Kristalle können natürlichen ([[Mineral]]e) oder synthetischen (zum Beispiel [[Keramik]]en, [[Metall]]e, gezüchtete Kristalle von organischen Molekülen oder biologischen Makromolekülen) Ursprungs sein. Es kann sich dabei also um [[Anorganische Chemie|anorganisch]]e oder [[Organische Chemie|organisch]]e Stoffe handeln, einschließlich biologischer Makromoleküle wie [[Protein]]e. Ein wichtiges Teilgebiet der Kristallographie ist die [[Kristallstrukturanalyse]], womit der atomare Aufbau der Kristalle untersucht wird. Neben der Struktur und Packung der Atome und Moleküle in dem Kristall, welche die physikalisch-chemischenen Eigenschaften des kristallinen Materials bestimmt, wird dabei auch die [[Konstitution (Chemie)|Konstitution]], [[Stereochemie]] und [[Konformation]] von [[Molekül]]en im Kristall analysiert. Diese Methode hat damit auch große Bedeutung in der [[Chemie]], [[Biochemie]] und [[Strukturbiologie]] von Molekülverbindungen und [[Komplexchemie|Komplexverbindungen]], auch wenn der kristalline Zustand oder überhaupt die Struktur im Festkörper nicht Interesse der Forschung ist.
Die Kristallographie ist eine [[Materialwissenschaft]], die [[physik]]alische und [[Chemie|chemische]] Parameter von Kristallen bestimmt und die in ihnen auftretenden physikochemischen Prozesse untersucht. Die untersuchten Kristalle können natürlichen ([[Mineral]]e) oder synthetischen (zum Beispiel [[Keramik]]en, [[Metall]]e) Ursprungs sein. Es kann sich dabei nicht nur um [[Anorganische Chemie|anorganisch]]e, sondern auch um [[Organische Chemie|organisch]]e Stoffe handeln, insbesondere biologische Makromoleküle wie [[Protein]]e. Obwohl die meisten heute bekannten Kristalle zur letztgenannten Gruppe gehören, ist die Kristallographie historisch gesehen ein Teilgebiet der [[Mineralogie]], aus der sie  entstanden ist. Allerdings hat sie sich als bedeutende Methode auf andere Wissenschaftsbereiche ausgedehnt, z. B. als Teilgebiet der [[Strukturbiologie]].


== Untersuchungsmethoden ==
== Untersuchungsmethoden ==
Zeile 24: Zeile 22:


== Teildisziplinen ==
== Teildisziplinen ==
[[Datei:Snow_crystallization_in_Akureyri_2005-02-26_19-03-37.jpeg|mini|[[Eis]]kristalle bilden sich bei hoher Luftfeuchtigkeit und niedriger Temperatur]]
[[Datei:Snow crystallization in Akureyri 2005-02-26 19-03-37.jpeg|mini|[[Eis]]kristalle bilden sich bei hoher Luftfeuchtigkeit und niedriger Temperatur]]
;Geometrische Kristallographie:
;Geometrische Kristallographie:
* [[Kristallmorphologie]]
* [[Kristallmorphologie]]
Zeile 40: Zeile 38:


== Studium ==
== Studium ==
In [[Deutschland]] kann Kristallographie als Fachrichtung des Studiengangs [[Mineralogie]] studiert werden. Nach dessen Zusammenlegung mit der [[Geologie]] und der [[Geophysik]] werden kristallographische Lehrinhalte in den neuen gemeinsamen [[Bachelor]]- und [[Master]]studiengängen „[[Geowissenschaften]]“ vermittelt. In der [[Schweiz]] existiert ein eigener Studiengang Kristallographie; diesen gab es auch in der [[Deutsche Demokratische Republik|DDR]]. Absolventen dieser Studiengänge führen den akademischen Grad „Diplom-Kristallograph“. Vorlesungen über Kristallographie sind unter anderem auch Teil der Studienrichtungen [[Physik]], [[Chemie]], [[Materialwissenschaft und Werkstofftechnik]].
In [[Deutschland]] konnte Kristallographie als selbständiges Fach und als Fachrichtung des Studiengangs [[Mineralogie]] studiert werden. Nach dessen Zusammenlegung mit der [[Geologie]] und der [[Geophysik]] werden kristallographische Lehrinhalte in den neuen gemeinsamen [[Bachelor]]- und [[Master]]studiengängen „[[Geowissenschaften]]“ vermittelt. In der [[Schweiz]] existiert ein eigener Studiengang Kristallographie; diesen gab es auch in der [[Deutsche Demokratische Republik|DDR]]. Absolventen dieser Studiengänge führen den akademischen Grad „Diplom-Kristallograph“. Vorlesungen über Kristallographie sind unter anderem auch Teil der Studienrichtungen [[Physik]], [[Chemie]], [[Materialwissenschaft und Werkstofftechnik]].


== Literatur ==
== Literatur ==
* Walter Borchardt-Ott, Heidrun Sowa: ''Kristallographie: eine Einführung für Naturwissenschaftler''. 8., korrigierte Auflage, Springer, Berlin 2012, ISBN 978-3-642-34810-5 (Erstausgabe: ''Kristallographie: eine Einführung  für Naturwissenschaftler'' (= ''Heidelberger Taschenbücher'', Band 180)). Springer, Berlin / Heidelberg / New York, NY 1976, ISBN 3-540-07771-5.
* Walter Borchardt-Ott, Heidrun Sowa: ''Kristallographie: eine Einführung für Naturwissenschaftler''. 8., korrigierte und aktualisierte Auflage, Springer, Berlin 2012, ISBN 978-3-642-34810-5 (Erstausgabe: ''Kristallographie: eine Einführung  für Naturwissenschaftler'' (= ''Heidelberger Taschenbücher'', Band 180)). Springer, Berlin / Heidelberg / New York, NY 1976, ISBN 3-540-07771-5.
* [[Will Kleber]], [[Hans-Joachim Bautsch]], [[Joachim Bohm (Kristallograph)|Joachim Bohm]], [[Detlef Klimm]]: ''Einführung in die Kristallographie''. 19. verbesserte Auflage, Oldenbourg, München 2010, ISBN 978-3-486-59075-3.
* [[Will Kleber]], [[Hans-Joachim Bautsch]], [[Joachim Bohm (Kristallograph)|Joachim Bohm]], [[Detlef Klimm]]: ''Einführung in die Kristallographie''. 19. verbesserte Auflage, Oldenbourg, München 2010, ISBN 978-3-486-59075-3.
* ''Historical atlas of crystallography'', edited by José Lima-de-Faria (1990). Kluwer Academic Publishers. Dordrecht, Boston, London ISBN 0-7923-0649-X
* ''Historical atlas of crystallography'', edited by José Lima-de-Faria (1990). Kluwer Academic Publishers. Dordrecht, Boston, London ISBN 0-7923-0649-X
Zeile 52: Zeile 50:


== Weblinks ==
== Weblinks ==
{{Wiktionary|Kristallographie}}
{{Wiktionary}}
{{commonscat|Crystallography}}
{{commonscat|Crystallography}}
* [http://www.dgk-home.de/ Deutsche Gesellschaft für Kristallographie]
* [http://www.dgk-home.de/ Deutsche Gesellschaft für Kristallographie]

Aktuelle Version vom 27. Januar 2022, 09:58 Uhr

Die Kristallographie (alternative Schreibung Kristallografie) oder Kristallkunde ist die Wissenschaft von den Kristallen, ihrer Struktur, Entstehung oder Herstellung und ihrer Eigenschaften und Anwendungsmöglichkeiten.

Geschichte

Erste Ansätze zu einer systematischen Erfassung von Mineralien finden sich bei Theophrastos von Eresos (371–287 v. Chr.) und speziell der Kristalle im Werk Naturalis historia von Plinius dem Älteren (23/24–79 n. Chr.), der beispielsweise den oktaedrischen Kristallhabitus und die extreme Härte von Diamanten beschreibt. In seinem 1546 erschienenen Buch De natura fossilium teilt Georgius Agricola Minerale nach ihren physikalischen Eigenschaften ein und kommentiert deren geometrische Formen. Johannes Kepler gelangte bei seiner Analyse des Aufbaus der sechseckigen Schneeflocken in seiner Schrift Strena seu de nive sexangula 1611 zur sogenannten Keplerschen Vermutung, die bestmögliche Kugelpackungen beinhaltet.

Die ersten wissenschaftlichen Untersuchungen an Kristallen betrafen ihre äußere Form und ihre geometrischen Eigenschaften. So entdeckte Nicolaus Steno 1669 das Gesetz der Winkelkonstanz, dem zufolge die Winkel zwischen kristallographisch gleichen Flächen desselben Minerals stets gleich groß sind.[1] René-Just Haüy formulierte 1801 das „Dekreszenzgesetz“ und das „Symmetriegesetz“; er war der erste, der den Begriff der Symmetrie in einer formalen Definition in die Kristallographie einführte.

Die Mitte des 19. Jahrhunderts entwickelte Gruppentheorie wurde von den Kristallographen schnell übernommen. Nach Vorarbeiten Leonhard Sohnckes (Sohncke-Raumgruppen, 1876) gelang Arthur Moritz Schoenflies und Jewgraf Stepanowitsch Fjodorow 1890/91 die Ableitung aller 230 kristallographischen Raumgruppen.

Der Beweis, dass Kristalle dreidimensional periodisch aufgebaut sind, gelang Max von Laue mit Hilfe der Röntgenbeugung 1912. Die Bestimmung der Strukturen von einfachen anorganischen Kristallen wie Natriumchlorid (NaCl) konnte bald darauf von William Henry Bragg und William Lawrence Bragg durchgeführt werden. Diese Methode ermöglichte in den folgenden Jahrzehnten die Aufklärung der Kristallstruktur der Desoxyribonukleinsäure durch Rosalind Franklin, James Watson und Francis Crick (1953) und der des Insulins durch Dorothy Crowfoot Hodgkin (1969) sowie die Entdeckung von fünfzähligen Symmetrieachsen (Quasikristall) in einer schnell abgekühlten Aluminium-Mangan Legierung durch Dan Shechtman und Mitarbeiter (1984).

Das Jahr 2014 wurde von der UNO zum Internationalen Jahr der Kristallographie ausgerufen.[2] Die Bedeutung der Kristallographie zeigt sich auch daran, dass für bahnbrechende Fortschritte in kristallographischen Techniken und daraus resultierenden Ergebnissen bis jetzt 29 Nobelpreise verliehen wurden.[3]

Untersuchungsgegenstand

Historisch gesehen ist die Kristallographie ein Teilgebiet der Mineralogie, aus der sie entstanden ist. Kristalle können als Materialien Untersuchungsgegenstand der Forschung sein. In diesem Sinne ist die Kristallographie eine Materialwissenschaft, die physikalische und chemische Parameter von Kristallen bestimmt und die in ihnen auftretenden physikochemischen Prozesse untersucht. Die untersuchten Kristalle können natürlichen (Minerale) oder synthetischen (zum Beispiel Keramiken, Metalle, gezüchtete Kristalle von organischen Molekülen oder biologischen Makromolekülen) Ursprungs sein. Es kann sich dabei also um anorganische oder organische Stoffe handeln, einschließlich biologischer Makromoleküle wie Proteine. Ein wichtiges Teilgebiet der Kristallographie ist die Kristallstrukturanalyse, womit der atomare Aufbau der Kristalle untersucht wird. Neben der Struktur und Packung der Atome und Moleküle in dem Kristall, welche die physikalisch-chemischenen Eigenschaften des kristallinen Materials bestimmt, wird dabei auch die Konstitution, Stereochemie und Konformation von Molekülen im Kristall analysiert. Diese Methode hat damit auch große Bedeutung in der Chemie, Biochemie und Strukturbiologie von Molekülverbindungen und Komplexverbindungen, auch wenn der kristalline Zustand oder überhaupt die Struktur im Festkörper nicht Interesse der Forschung ist.

Untersuchungsmethoden

Ein Zweikreisgoniometer zur Messung der Kristallwinkel. Die Ablesegenauigkeit auf den Teilkreisen ist besser als eine Bogenminute

Für Untersuchungen der Form von Kristallen benutzt man Methoden der geometrischen Optik wie die Reflexionsgoniometrie, bei welcher der Reflexionswinkel des Lichtes zur Bestimmung der Lage einer Kristallfläche im Raum genutzt wird. Eine Standardmethode zur Bestimmung der optischen Eigenschaften von Kristallen (Lichtbrechung, Doppelbrechung, Pleochroismus, Bireflektanz, Anisotropieeffekte) ist die Polarisationsmikroskopie, die sich die Erkenntnisse der Wellenoptik zunutze macht. Mit Hilfe des Universaldrehtischs, auch als Fjodorow-Tisch bezeichnet, der einen Zusatz zum Polarisationsmikroskop darstellt, wird durch freie Rotation der Probe in allen Richtungen die Bestimmung der Orientierung der in ihr enthaltenen Kristalle ermöglicht.

Heute ist die Röntgenbeugung die Standardmethode zur Bestimmung von Kristallstrukturen, obwohl es inzwischen auch andere Methoden wie zum Beispiel die Neutronenbeugung gibt. Während Beugungsmethoden Informationen über den Aufbau des Kristalls als Ganzem liefern, ermöglicht es die Spektroskopie, die nähere Umgebung einzelner Atome zu erforschen. Mit Methoden wie der IR-Spektroskopie, der Raman-Spektroskopie, der Elektronenspinresonanz und der Kernspinresonanz können die Koordinationszahl einzelner Atome bestimmt und der Einbau von Fremdatomen nachgewiesen werden.

Teildisziplinen

Eiskristalle bilden sich bei hoher Luftfeuchtigkeit und niedriger Temperatur
Geometrische Kristallographie
Physikalisch-Chemische Kristallographie
Technische Kristallographie

Studium

In Deutschland konnte Kristallographie als selbständiges Fach und als Fachrichtung des Studiengangs Mineralogie studiert werden. Nach dessen Zusammenlegung mit der Geologie und der Geophysik werden kristallographische Lehrinhalte in den neuen gemeinsamen Bachelor- und Masterstudiengängen „Geowissenschaften“ vermittelt. In der Schweiz existiert ein eigener Studiengang Kristallographie; diesen gab es auch in der DDR. Absolventen dieser Studiengänge führen den akademischen Grad „Diplom-Kristallograph“. Vorlesungen über Kristallographie sind unter anderem auch Teil der Studienrichtungen Physik, Chemie, Materialwissenschaft und Werkstofftechnik.

Literatur

  • Walter Borchardt-Ott, Heidrun Sowa: Kristallographie: eine Einführung für Naturwissenschaftler. 8., korrigierte und aktualisierte Auflage, Springer, Berlin 2012, ISBN 978-3-642-34810-5 (Erstausgabe: Kristallographie: eine Einführung für Naturwissenschaftler (= Heidelberger Taschenbücher, Band 180)). Springer, Berlin / Heidelberg / New York, NY 1976, ISBN 3-540-07771-5.
  • Will Kleber, Hans-Joachim Bautsch, Joachim Bohm, Detlef Klimm: Einführung in die Kristallographie. 19. verbesserte Auflage, Oldenbourg, München 2010, ISBN 978-3-486-59075-3.
  • Historical atlas of crystallography, edited by José Lima-de-Faria (1990). Kluwer Academic Publishers. Dordrecht, Boston, London ISBN 0-7923-0649-X
  • Zeitschrift für Kristallographie. International journal for structural, physical, and chemical aspects of crystalline materials, Oldenbourg Wissenschaftsverlag, München ISSN 0044-2968

Einzelnachweise

  1. Hans Seifert: Nicolaus Steno als Bahnbrecher der modernen Kristallographie. In: Sudhoffs Archiv 38, 1954, S. 29–47.
  2. Internationales Jahr der Kristallographie (Memento des Originals vom 26. März 2014 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.iycr2014.de
  3. International Union of CRYSTALLOGRAPHY

Weblinks

Wiktionary: Kristallographie – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Crystallography – Sammlung von Bildern, Videos und Audiodateien