141.203.192.26 (Diskussion) (→Beispiele: Lotus > Lotos (x2)) |
imported>Julius2803 K (Komma vor „sondern“, „indem“, „wobei“ etc.) |
||
Zeile 1: | Zeile 1: | ||
[[Datei:A water droplet DWR-coated surface2 edit1.jpg|mini|alt=Close-up of a drop of water (almost spherical) on blue fabric, with a shadow under it|Wassertropfen auf einem wasserabweisenden Gewebe]] | [[Datei:A water droplet DWR-coated surface2 edit1.jpg|mini|alt=Close-up of a drop of water (almost spherical) on blue fabric, with a shadow under it|Wassertropfen auf einem wasserabweisenden Gewebe]] | ||
'''Benetzung''' ist ein Verhalten von [[Flüssigkeit]]en bei Kontakt mit der Oberfläche von [[Festkörper]]n. '''Benetzbarkeit''' ist die zugehörige Eigenschaft der Festkörperoberfläche. Je nachdem, um welche Flüssigkeit es sich handelt, aus welchem Material die Oberfläche besteht und wie deren Beschaffenheit ist, zum Beispiel in Bezug auf die [[Rauheit]], benetzt die Flüssigkeit die Oberfläche mehr oder weniger stark. | '''Benetzung''' (zu „benetzen“ von „netzen“ im Sinne von „nass machen, befeuchten“) ist ein Verhalten von [[Flüssigkeit]]en bei Kontakt mit der Oberfläche von [[Festkörper]]n. '''Benetzbarkeit''' ist die zugehörige Eigenschaft der Festkörperoberfläche. Je nachdem, um welche Flüssigkeit es sich handelt, aus welchem Material die Oberfläche besteht und wie deren Beschaffenheit ist, zum Beispiel in Bezug auf die [[Rauheit]], benetzt die Flüssigkeit die Oberfläche mehr oder weniger stark. | ||
Ein auf einer horizontalen, ebenen Oberfläche aufgebrachter [[Tropfen|Flüssigkeitstropfen]] (Abb. 1) veranschaulicht die Benetzung und ihre Unterteilung. Dabei ist die Benetzbarkeit von den Verhältnissen der beteiligten [[Oberflächenspannung]]en abhängig, die über die [[Youngsche Gleichung]] mit dem [[Kontaktwinkel]] in Beziehung stehen und diesen damit zum Maß für die Benetzbarkeit machen. Je kleiner dabei der Kontaktwinkel ist, desto größer ist die Benetzbarkeit. | Ein auf einer horizontalen, ebenen Oberfläche aufgebrachter [[Tropfen|Flüssigkeitstropfen]] (Abb. 1) veranschaulicht die Benetzung und ihre Unterteilung. Dabei ist die Benetzbarkeit von den Verhältnissen der beteiligten [[Oberflächenspannung]]en abhängig, die über die [[Youngsche Gleichung]] mit dem [[Kontaktwinkel]] in Beziehung stehen und diesen damit zum Maß für die Benetzbarkeit machen. Je kleiner dabei der Kontaktwinkel ist, desto größer ist die Benetzbarkeit. | ||
Zeile 20: | Zeile 20: | ||
== Physikalische Beschreibung == | == Physikalische Beschreibung == | ||
=== Spreitparameter === | === Spreitparameter === | ||
{{Hauptartikel|Spreitung}} | |||
Der Spreitparameter beschreibt die Differenz zwischen der [[Oberflächenspannung]] des Substrats σ<sub>S</sub>, der Oberflächenspannung der Flüssigkeit σ<sub>L</sub> und der [[Grenzflächenspannung]] zwischen Substrat und Flüssigkeit σ<sub>SL</sub> und dient zur Unterscheidung zwischen vollständiger und partieller Benetzung:<ref>P. G. de Gennes, Quéré D. Brochard-Wyart: ''Capillarity and Wetting Phenomena.'' Springer, New York 2004, ISBN 0-387-00592-7.</ref> | Der Spreitparameter beschreibt die Differenz zwischen der [[Oberflächenspannung]] des Substrats σ<sub>S</sub>, der Oberflächenspannung der Flüssigkeit σ<sub>L</sub> und der [[Grenzflächenspannung]] zwischen Substrat und Flüssigkeit σ<sub>SL</sub> und dient zur Unterscheidung zwischen vollständiger und partieller Benetzung:<ref>P. G. de Gennes, Quéré D. Brochard-Wyart: ''Capillarity and Wetting Phenomena.'' Springer, New York 2004, ISBN 0-387-00592-7.</ref> | ||
Zeile 27: | Zeile 28: | ||
=== Kinetik der Benetzung === | === Kinetik der Benetzung === | ||
Wird ein Flüssigkeitstropfen auf eine horizontale, glatte Substratoberfläche aufgebracht, befindet sich dieser meist nicht im Gleichgewicht, sondern spreitet bis er einen endlichen Kontaktwinkel erreicht (partielle Benetzung) oder bis im Idealfall ein monomolekularer Film die Oberfläche bedeckt (vollständige Benetzung). Physikalisch lässt sich die Benetzungskinetik eines kleinen, vollständig benetzenden Tropfen durch das Gesetz nach Tanner beschreiben. Dieses stellt, bei Vernachlässigung der [[Gewichtskraft]], eine Proportionalität zwischen dem [[Kontaktwinkel]] θ und der [[Kapillarzahl]] Ca dar:<ref>L. H. Tanner: ''The Spreading of silicone oil drops on horizontal surfaces.'' In: ''Journal of Physics D: Applied Physics.'' 12, 9, 1979, S. 1473–1484. [[doi:10.1088/0022-3727/12/9/009]]</ref> | Wird ein Flüssigkeitstropfen auf eine horizontale, glatte Substratoberfläche aufgebracht, befindet sich dieser meist nicht im Gleichgewicht, sondern spreitet, bis er einen endlichen Kontaktwinkel erreicht (partielle Benetzung) oder bis im Idealfall ein monomolekularer Film die Oberfläche bedeckt (vollständige Benetzung). Physikalisch lässt sich die Benetzungskinetik eines kleinen, vollständig benetzenden Tropfen durch das Gesetz nach Tanner beschreiben. Dieses stellt, bei Vernachlässigung der [[Gewichtskraft]], eine Proportionalität zwischen dem [[Kontaktwinkel]] θ und der [[Kapillarzahl]] Ca dar:<ref>L. H. Tanner: ''The Spreading of silicone oil drops on horizontal surfaces.'' In: ''Journal of Physics D: Applied Physics.'' 12, 9, 1979, S. 1473–1484. [[doi:10.1088/0022-3727/12/9/009]]</ref> | ||
: <math> \theta^3 \propto Ca </math> | : <math> \theta^3 \propto Ca </math> | ||
Zeile 51: | Zeile 52: | ||
== Beispiele == | == Beispiele == | ||
* Blätter von Pflanzen in Kontakt mit Wassertropfen zeigen – je nach Blattart – einen der drei oben beschriebene Fälle der Benetzung. Die [[Lotosblumen|Lotosblume]] zum Beispiel weist nur eine sehr geringe Benetzung auf, was dem [[Lotoseffekt]] geschuldet ist. | * Blätter von Pflanzen in Kontakt mit Wassertropfen zeigen – je nach Blattart – einen der drei oben beschriebene Fälle der Benetzung. Die [[Lotosblumen|Lotosblume]] zum Beispiel weist nur eine sehr geringe Benetzung auf, was dem [[Lotoseffekt]] geschuldet ist. | ||
*Das Gegenteil vom Lotoseffekt ist der [[:en:Wetting#%22Petal_effect%22_vs._%22lotus_effect%22|Petal-Effekt]]. Beispielsweise besitzen Rosenblätter Mikro- und Nanostrukturen, die größer als die des Lotosblattes sind. Das Wasser dringt in die Mikro- aber nicht in die Nanostrukturen. Dadurch bildet sich ein rundlicher Wassertropfen, der unter Neigung nicht abperlt (Cassie-Imprägnierung). | |||
* Speiseöl in einer gereinigten [[Polytetrafluorethylen|Teflon]]-Bratpfanne weist eine partielle Benetzung auf. Bei Erhitzen des Öls geht die partielle in eine vollständige Benetzung über. | * Speiseöl in einer gereinigten [[Polytetrafluorethylen|Teflon]]-Bratpfanne weist eine partielle Benetzung auf. Bei Erhitzen des Öls geht die partielle in eine vollständige Benetzung über. | ||
* Das Wachsen eines Autos oder eines Skis bewirkt, dass die Benetzung von einer vollständigen über eine partielle in eine nur noch sehr geringe überführt wird. Dadurch wird der Kontakt mit Wasser und vor allem den darin gelösten Schmutzstoffen stark reduziert. Der Ski gleitet besser, das Auto bleibt länger sauber – bei beiden ist das Material so besser geschützt. | * Das Wachsen eines Autos oder eines Skis bewirkt, dass die Benetzung von einer vollständigen über eine partielle in eine nur noch sehr geringe überführt wird. Dadurch wird der Kontakt mit Wasser und vor allem den darin gelösten Schmutzstoffen stark reduziert. Der Ski gleitet besser, das Auto bleibt länger sauber – bei beiden ist das Material so besser geschützt. | ||
Zeile 61: | Zeile 63: | ||
* Um Benetzung auf [[Molekül|molekularer]] Ebene zu verstehen, muss man die [[Van-der-Waals-Kräfte|van der Waalsschen Kräfte]] berücksichtigen. | * Um Benetzung auf [[Molekül|molekularer]] Ebene zu verstehen, muss man die [[Van-der-Waals-Kräfte|van der Waalsschen Kräfte]] berücksichtigen. | ||
* Benetzung bildet die Grundlage für [[Kapillarität]]. | * Benetzung bildet die Grundlage für [[Kapillarität]]. | ||
*Die Benetzung kann mit Hilfe von [[Plasma (Physik)|Plasma]]<nowiki/>technologie erhöht werden.<ref>{{Internetquelle |url=https://www.relyon-plasma.com/applications/plasmaaktivierung/ |titel=Plasmaaktivierung · Oberflächenaktivierung & Oberflächenmodifizierung |zugriff=2019-02-22 |sprache=de-DE}}</ref> | |||
== Einzelnachweise == | == Einzelnachweise == |
Benetzung (zu „benetzen“ von „netzen“ im Sinne von „nass machen, befeuchten“) ist ein Verhalten von Flüssigkeiten bei Kontakt mit der Oberfläche von Festkörpern. Benetzbarkeit ist die zugehörige Eigenschaft der Festkörperoberfläche. Je nachdem, um welche Flüssigkeit es sich handelt, aus welchem Material die Oberfläche besteht und wie deren Beschaffenheit ist, zum Beispiel in Bezug auf die Rauheit, benetzt die Flüssigkeit die Oberfläche mehr oder weniger stark.
Ein auf einer horizontalen, ebenen Oberfläche aufgebrachter Flüssigkeitstropfen (Abb. 1) veranschaulicht die Benetzung und ihre Unterteilung. Dabei ist die Benetzbarkeit von den Verhältnissen der beteiligten Oberflächenspannungen abhängig, die über die Youngsche Gleichung mit dem Kontaktwinkel in Beziehung stehen und diesen damit zum Maß für die Benetzbarkeit machen. Je kleiner dabei der Kontaktwinkel ist, desto größer ist die Benetzbarkeit.
Um zu beurteilen, ob ein Tropfen sich auf einer Oberfläche ausbreitet, vergleicht man die Kohäsionskräfte innerhalb des Tropfens mit den Adhäsionskräften gegenüber der Oberfläche. Überwiegen die Adhäsionskräfte die Kohäsionskräfte bei weitem, wird der Tropfen sich auf der Oberfläche vollständig ausbreiten, er wird sie vollständig benetzen.
Die Flüssigkeit auf der Oberfläche zieht sich zu einem fast kugelförmigen Tropfen zusammen (Kontaktwinkel größer 90°). Bei leichter Neigung der Oberfläche gleitet der Tropfen ohne jegliche Flüssigkeitsrückstände herunter, mit anderen Worten: Die Flüssigkeit perlt ab. Im Idealfall handelt es sich um einen Kontaktwinkel von 180°. In diesem Fall berührt der Flüssigkeitstropfen den Feststoff nur an einem Punkt. (Beispiel A)
Die Flüssigkeit auf der Oberfläche bildet eine runde Haube (Kontaktwinkel kleiner 90°). Bei mittlerer Neigung der Oberfläche gleitet die Flüssigkeit keulenförmig von der Oberfläche herunter. Keine oder wenig Flüssigkeitsrückstände sind zu beobachten. (Beispiele B und C)
Die Flüssigkeit breitet sich auf der Oberfläche in Form einer flachen Scheibe aus (makroskopischer Kontaktwinkel nicht vorhanden). Erst bei stärkerer Neigung der Oberfläche rinnt die Flüssigkeit herunter. Dabei zieht sich die Flüssigkeitsscheibe in die Länge und bildet einen Streifen in Neigungsrichtung. Flüssigkeitsreste bleiben an der Oberfläche haften, auch bei stärkster Neigung. Im Idealfall handelt es sich um einen monomolekularen Film und einen Kontaktwinkel von Null. (Beispiel S)
Der Spreitparameter beschreibt die Differenz zwischen der Oberflächenspannung des Substrats σS, der Oberflächenspannung der Flüssigkeit σL und der Grenzflächenspannung zwischen Substrat und Flüssigkeit σSL und dient zur Unterscheidung zwischen vollständiger und partieller Benetzung:[1]
Im Fall S > 0 benetzt die Flüssigkeit das Substrat vollständig. Der Fall S < 0 charakterisiert die partielle Benetzung.
Wird ein Flüssigkeitstropfen auf eine horizontale, glatte Substratoberfläche aufgebracht, befindet sich dieser meist nicht im Gleichgewicht, sondern spreitet, bis er einen endlichen Kontaktwinkel erreicht (partielle Benetzung) oder bis im Idealfall ein monomolekularer Film die Oberfläche bedeckt (vollständige Benetzung). Physikalisch lässt sich die Benetzungskinetik eines kleinen, vollständig benetzenden Tropfen durch das Gesetz nach Tanner beschreiben. Dieses stellt, bei Vernachlässigung der Gewichtskraft, eine Proportionalität zwischen dem Kontaktwinkel θ und der Kapillarzahl Ca dar:[2]
In der industriellen Praxis ist für den Anwender häufig der Tropfenradius r nach einer bestimmten Zeit t von Interesse. Bei gleichzeitiger Berücksichtigung der Kapillarkraft, der Gewichtskraft und einer viskosen Kraft ergibt sich der folgende Zusammenhang für die vollständige Benetzung[3]
und für die partielle Benetzung
mit
Die Benetzung einer Festkörper-Oberfläche hängt neben den drei bereits genannten Eigenschaften noch von weiteren Faktoren ab. Dazu zählen die Temperatur und das Gas, in dem sich Flüssigkeit und Festkörper befinden (z. B. Luft).
Wasser kann auf glatten, extrem hydrophoben Oberflächen Kontaktwinkel von maximal 120° erreichen. Bei aufgerauten Oberflächen mit hydrophobem Charakter kann dieser Winkel jedoch auch bis zu 160° betragen. Dies bezeichnet man als Superhydrophobie.