Aktionspotential: Unterschied zwischen den Versionen

Aktionspotential: Unterschied zwischen den Versionen

84.63.207.190 (Diskussion)
 
imported>R*elation
K (→‎Ablauf: satzbau; knapper)
 
Zeile 1: Zeile 1:
'''Aktionspotential''', abgekürzt '''AP''', bezeichnet in der [[Physiologie]] eine vorübergehende charakteristische Abweichung des [[Membranpotential]]s einer [[Zelle (Biologie)|Zelle]] vom [[Ruhepotential]], die bei deren [[Erregung (Physiologie)|Erregung]] (Exzitation) selbsttätig mit zelltypischem Verlauf gebildet wird und sich als elektrisches Signal über die [[Zellmembran]] ausbreitet, umgangssprachlich bei [[Nervenzelle]]n auch ''Nervenimpuls'' genannt.
Als '''Aktionspotential''', abgekürzt '''AP''', wird in der [[Physiologie]] eine vorübergehende charakteristische Abweichung des [[Membranpotential]]s einer [[Zelle (Biologie)|Zelle]] vom [[Ruhepotential]] bezeichnet. Ein Aktionspotential bildet sich selbsttätig mit zelltypischem Verlauf bei einer [[Erregung (Physiologie)|Erregung]] (Exzitation) der Zelle und breitet sich als elektrisches Signal über die [[Zellmembran]] aus. Umgangssprachlich werden die Aktionspotentiale von [[Nervenzelle]]n auch „Nervenimpuls“ genannt.


Nur erregbare Zellen können auf Reize oder Signale mit Aktionspotentialen antworten, durch kurzfristige Änderungen der [[Membranpermeabilität|Membranleitfähigkeit]] infolge von Wechselwirkungen besonderer spannungsgesteuerter [[Ionenkanäle]] in ihrer Membran. Deren zeitabhängig unterschiedliche Aktivierung führt zu verschiedenen Ionenströmen mit entsprechend verschobenen Potentialdifferenzen. Daraus resultiert ein Aktionspotentialverlauf, bei dem auf die Phase der [[Depolarisation (Physiologie)|Depolarisation]] nach einem eventuellen Plateau die der [[Repolarisation]] folgt, mit nachschwingender [[Hyperpolarisation (Biologie)|Hyperpolarisation]]. Die Repolarisation wird teilweise auch als Hyperpolarisation bezeichnet, die Hyperpolarisation wiederum als Nachhyperpolarisation. Dieser Vorgang läuft selbsttätig in jeweils typischer Form ab, wenn ein bestimmtes [[Schwellenpotential]] überschritten wird, und ist erst nach einer gewissen [[Refraktärzeit]] wieder auslösbar.
Nur erregbare Zellen können auf Reize oder Signale hin Aktionspotentiale bilden, durch kurzfristige Änderungen der [[Membranpermeabilität|Membranleitfähigkeit]] infolge von Wechselwirkungen besonderer spannungsgesteuerter [[Ionenkanäle]] in ihrer Membran. Deren zeitabhängig unterschiedliche Aktivierung führt zu verschiedenen Ionenströmen mit entsprechend verschobenen Potentialdifferenzen. Daraus resultiert ein Aktionspotentialverlauf, bei dem auf die Phase der [[Depolarisation (Physiologie)|Depolarisation]] nach einem eventuellen Plateau die Phase der [[Repolarisation]] folgt, mit nachschwingender [[Hyperpolarisation (Biologie)|Hyperpolarisation]]. Dieser Vorgang läuft jeweils selbsttätig in typischer Form ab, wenn ein bestimmtes [[Schwellenpotential]] überschritten wird, und ist erst nach einer gewissen [[Refraktärzeit]] wieder auslösbar.


[[Datei:Action Potential.gif|mini|300px|Fortleitung eines Aktionspotentials über die [[Axolemm|Membran]] entlang dem [[Axon]] eines [[Neuron]]s.]]
[[Datei:Action Potential.gif|mini|300px|Fortleitung eines Aktionspotentials über die [[Axolemm|Membran]] entlang dem [[Axon]] eines [[Neuron]]s.]]


Zu den erregbaren Zellen gehören bei Tieren außer ihren Nervenzellen auch [[Muskelzelle]]n und einige [[sekretorisch]]e Zellen. Nervenzellen nehmen Reize oder Signale von anderen Zellen auf, [[Signaltransduktion|überführen]] sie in Membranpotentialveränderungen und können Aktionspotentiale bilden (Erregungsbildung) als zelleigenes Signal, das entlang dem [[Axon]] in einer [[Nervenfaser]] fortgeleitet (→ [[Erregungsleitung]]) und über [[Synapse]]n an andere Zellen übertragen wird (→ [[Erregungsübertragung]]). Über [[Motorische Endplatte|neuromuskuläre Synapsen]] werden Muskelzellen erreicht, die ebenfalls erregt werden können und dann Aktionspotentiale bilden, die über ihre Membraneinstülpungen geleitet eine [[Muskelkontraktion|Kontraktion]] der [[Muskelfaser]] bewirken. Über neuroglanduläre Synapsen werden [[Drüse]]nzellen erreicht; besondere neuroendokrine Zellen können Aktionspotentiale bilden, denen eine Abgabe von [[Neurohormon]]en folgt.
Zu den erregbaren Zellen gehören bei Tieren außer ihren Nervenzellen auch [[Muskelzelle]]n und einige [[sekretorisch]]e Zellen. Nervenzellen nehmen Reize oder Signale von anderen Zellen auf, [[Signaltransduktion|überführen]] sie in Membranpotentialveränderungen und können Aktionspotentiale bilden (Erregungsbildung) als zelleigenes Signal, das entlang dem [[Axon]] in einer [[Nervenfaser]] fortgeleitet (→ [[Erregungsleitung]]) und über [[Synapse]]n an andere Zellen übertragen wird (→ [[Erregungsübertragung]]). Über [[Motorische Endplatte|neuromuskuläre Synapsen]] werden Muskelzellen erreicht, die ebenfalls erregt werden können und dann Aktionspotentiale bilden, die geleitet über Membraneinstülpungen eine [[Muskelkontraktion|Kontraktion]] der [[Muskelfaser]] bewirken. Über neuroglanduläre Synapsen werden [[Drüse]]nzellen erreicht; besondere neuroendokrine Zellen können Aktionspotentiale bilden, denen eine Abgabe von [[Neurohormon]]en folgt.


Daneben kommen Aktionspotentiale auch in [[Einzeller]]n vor (so bei [[Pantoffeltierchen]]<ref name="Machemer_1979">{{cite journal | author = Machemer H, Ogura A | date = 1979 | title = Ionic conductances of membranes in ciliated and deciliated Paramecium.| journal = [[The Journal of Physiology]]| volume = 296 | pages = 49–60 | pmid = 529122}}</ref> und [[Kieselalgen]]<ref name="Taylor_2009">{{cite journal | author = Taylor AR | date = 2009| title = A fast Na+/Ca2+-based action potential in a marine diatom | journal = [[PLOS ONE]] | volume = 4(3)| pages = e4966 | pmid = 19305505}}</ref>), sowie in mehrzelligen Algen ([[Armleuchteralgen]]<ref name="Beilby_2007" />), Gefäßpflanzen ([[Mimose]]<ref name="Sibaoka_1962">{{cite journal | author = Sibaoka T | date = 1962| title = Excitable cells in Mimosa| journal = Science | volume = 137 | pages = 226 | pmid = 13912476 }}</ref>) und [[Pilze]]n.<ref name="Slayman_1976">{{cite journal | author = Slayman CL, Long WS, Gradmann D | date = 1976 | title = Action potentials in ''[[Neurospora crassa]]'', a mycelial fungus | journal = [[Biochimica et biophysica acta]] | volume = 426 | pages = 737–744 | pmid = 130926}}</ref>
Daneben kommen Aktionspotentiale auch in [[Einzeller]]n vor – beispielsweise bei [[Pantoffeltierchen]]<ref name="Machemer_1979">{{Literatur |Autor=H. Machemer, A. Ogura |Titel=Ionic conductances of membranes in ciliated and deciliated Paramecium. |Sammelwerk= [[The Journal of Physiology]] |Band=296 |Datum=1979 |Seiten=49–60 |PMID=529122}}</ref> und [[Kieselalgen]]<ref name="Taylor_2009">{{Literatur |Autor=A. R. Taylor |Titel=A fast Na+/Ca2+-based action potential in a marine diatom |Sammelwerk= [[PLOS ONE]] |Band=4(3) |Datum=2009 |Fundstelle=Artikel e4966 |PMID=19305505}}</ref> sowie ebenfalls bei mehrzelligen Algen ([[Armleuchteralgen]]),<ref name="Beilby_2007" /> Gefäßpflanzen ([[Mimose]])<ref name="Sibaoka_1962">{{Literatur |Autor=T. Sibaoka |Titel=Excitable cells in Mimosa |Sammelwerk=Science |Band=137 |Datum=1962 |Seiten=226 |PMID=13912476}}</ref> und [[Pilze]]n.<ref name="Slayman_1976">{{Literatur |Autor=C. L. Slayman, W. S. Long, D. Gradmann |Titel= Action potentials in ''[[Neurospora crassa]]'', a mycelial fungus |Sammelwerk= [[Biochimica et biophysica acta]] |Band=426 |Datum=1976 |Seiten=737–744 |PMID=130926}}</ref>


== Geschichte ==
== Geschichte ==
Die Rolle von Elektrizität im [[Nervensystem]] wurde von [[Luigi Galvani]] zwischen 1791 und 1797 anhand sezierter Frösche untersucht.<ref name="piccolino_1997">{{Cite journal|author = Piccolino M|year = 1997|title = Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology|journal = Trends in Neuroscience|volume = 20|pages = 443–448|doi = 10.1016/S0166-2236(97)01101-6|issue = 10}}</ref> Seine Erkenntnisse brachten [[Alessandro Volta]] dazu, die [[Voltasche Säule]] zu erfinden – die erste [[Batterie (Elektrotechnik)|Batterie]], welche elektrische Energie speichert. [[Alessandro Volta]] nutzte diese Batterie um mit tierischer Elektrizität (wie z. B. Elektrizität von Zitteraalen), sowie die Auswirkung von [[Gleichspannung]] auf Lebewesen zu untersuchen.<ref name="piccolino_2000">{{Cite journal|author = Piccolino M|year = 2000|title = The bicentennial of the Voltaic battery (1800–2000): the artificial electric organ|journal = Trends in Neuroscience|volume = 23|pages = 147–151|doi = 10.1016/S0166-2236(99)01544-1|issue = 4}}</ref>
[[Datei:Esperimenti con rane - Galvani.jpg|mini|300px|[[Luigi Galvani|Galvani]] experimentierte an Froschschenkeln<br /> (''De viribus electricitatis in motu musculari'', Tafel 3<ref name="galvani" />)]]
Das Phänomen von Muskelbewegungen infolge elektrischer Kräfte entdeckte der Bologneser [[Luigi Galvani|Luigi Aloisio Galvani]] als Zuckung von Schenkeln sezierter Frösche.<ref name="piccolino_1997">{{Literatur |Autor=M. Piccolino |Titel=Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology |Sammelwerk=Trends in Neuroscience |Band=20 |Nummer=10 |Datum=1997 |Seiten=443–448 |DOI=10.1016/S0166-2236(97)01101-6}}</ref> Dessen 1791<ref name="galvani">L. A. Galvani: ''De viribus electricitatis in motu musculari.'' („Über Kräfte der Electricität bei Muskelbewegung“). Bologna 1791. [https://web.archive.org/web/20140612132350/http://137.204.24.205/cis13b/bsco3/BROWSE.ASP?id_opera=23&pg=60 (online)]</ref> veröffentlichen Erkenntnisse über eine „tierische elektrische Flüssigkeit“ in Nerven und Muskeln veranlassten [[Alessandro Volta]] zu seinen Untersuchungen über den ''[[Galvanismus]]'', die 1799 zur Erfindung der ersten [[Batterie (Elektrotechnik)|Batterie]] führten – [[Voltasche Säule|Volta’sche Säule]] genannt. Volta nutzte diese auch dazu, die Auswirkung von [[Gleichspannung]] auf Lebewesen zu untersuchen.<ref name="piccolino_2000">{{Literatur |Autor=M. Piccolino |Titel=The bicentennial of the Voltaic battery (1800–2000): the artificial electric organ |Sammelwerk=Trends in Neuroscience |Band=23 |Nummer=4 |Datum=2000 |Seiten=147–151 |DOI=10.1016/S0166-2236(99)01544-1}}</ref>


1952 legten [[Alan Lloyd Hodgkin]] und [[Andrew Fielding Huxley]] ein mathematisches Modell<ref name="Hodgkin_1952">{{cite journal | author = Hodgkin AL, Huxley AF | date = 1952| title = A quantitative description of membrane current and its application to conduction and excitation in nerve| journal = J. Physiol. | volume = 117 | pages = 500–544 | pmid = 12991237}}</ref> vor, das die Entstehung des Aktionspotentials im [[Riesenaxon]] des Tintenfisches durch das Wechselspiel verschiedener [[Ionenkanal|Ionenkanäle]] erklärt und unter dem Namen [[Hodgkin-Huxley-Modell]] berühmt wurde. Für diese Entdeckung erhielten die beiden Forscher zusammen mit [[John Carew Eccles|John Eccles]] 1963 den [[Nobelpreis für Medizin]].
1952 legten [[Alan Lloyd Hodgkin]] und [[Andrew Fielding Huxley]] ein mathematisches Modell<ref name="Hodgkin_1952">{{Literatur |Autor=A. L. Hodgkin, A. F. Huxley |Titel=A quantitative description of membrane current and its application to conduction and excitation in nerve |Sammelwerk=J. Physiol. |Band=117 |Datum=1952 |Seiten=500–544 |PMID=12991237}}</ref> vor, das die Entstehung des Aktionspotentials im [[Riesenaxon]] des Tintenfisches durch das Wechselspiel verschiedener [[Ionenkanal|Ionenkanäle]] erklärt und unter dem Namen [[Hodgkin-Huxley-Modell]] berühmt wurde. Für diese Entdeckung erhielten die beiden Forscher zusammen mit [[John Carew Eccles|John Eccles]] 1963 den [[Nobelpreis für Medizin]].


== Grundlagen ==
== Grundlagen ==
Ein Aktionspotential verläuft in einer für die Zellart typischen Form. Es dauert bei Nervenzellen oft nur etwa ein bis zwei Millisekunden, bei [[Skelettmuskel]]zellen kaum länger, bei [[Herzmuskel]]zellen meist über 200 ms. Reizabhängig stärkere oder schwächere Aktionspotentiale gibt es dabei nicht, vielmehr sind es [[Alles-oder-nichts-Gesetz|Alles-oder-Nichts]]-Antworten. Die Signalstärke ergibt sich daher aus der Frequenz von Aktionspotentialen. Sie entstehen bei Nervenzellen typischerweise am [[Axonhügel]] und werden in Serien das [[Axon]] entlang fortgeleitet. Aktionspotentiale können sich auch rückwärts über den Zellkörper und die Dendriten ausbreiten; die Funktion dieser Weiterleitung wird noch untersucht. Die axonale Ausbreitung vom Zellkörper zum [[Endknöpfchen]] wird ''orthodrom'' genannt, die gegenläufige ''antidrom''.<ref>John P. J. Pinel, Paul Pauli: ''Biopsychologie.'' Pearson Studium; Auflage: 6., aktualis. Aufl. (29. Mai 2007), ISBN 3-8273-7217-8, S. 110.</ref>
Ein Aktionspotential verläuft in einer für die Zellart typischen Form. Es dauert bei Nervenzellen oft nur etwa ein bis zwei Millisekunden, bei [[Skelettmuskel]]zellen kaum länger, bei [[Herzmuskel]]zellen meist über 200&nbsp;ms. Reizabhängig stärkere oder schwächere Aktionspotentiale gibt es dabei nicht, vielmehr sind es [[Alles-oder-nichts-Gesetz|Alles-oder-Nichts]]-Antworten. Die Signalstärke ergibt sich daher aus der Frequenz von Aktionspotentialen. Sie entstehen bei Nervenzellen typischerweise am [[Axonhügel]] und werden in Serien das [[Axon]] entlang fortgeleitet. Aktionspotentiale können sich auch rückwärts über den Zellkörper und die Dendriten ausbreiten; die Funktion dieser Weiterleitung wird noch untersucht. Die axonale Ausbreitung vom Zellkörper zum [[Endknöpfchen]] wird ''orthodrom'' genannt, die gegenläufige ''antidrom''.<ref>John P. J. Pinel, [[Paul Pauli]]: ''Biopsychologie.'' 6., aktualis. Auflage. Pearson Studium, 2007, ISBN 978-3-8273-7217-8, S. 110.</ref>


Voraussetzung für die Ausbildung eines Aktionspotentials sind besondere Eigenschaften der [[Plasmamembran]] der Zelle. Die spezifische Ausstattung mit verschiedenen Gruppen von [[Ionenkanal|Ionenkanälen]] spiegelt sich in Kennzeichen der Verlaufsform wider. Zu einer  Erregung kommt es, wenn sich das Membranpotential vom Ruhewert entfernt und in Richtung weniger negativer Werte verschiebt. Erreicht diese anfängliche ''Vordepolarisation'' eine bestimmte Schwelle, das sogenannte [[Schwellenpotential]] (etwa bei −50&nbsp;mV), werden [[Spannungsgesteuerter Ionenkanal|spannungsgesteuerte Ionenkanäle]] aktiviert, die sich in verketteter Abfolge öffnen, damit Ionenströme ermöglichen, und wieder inaktivieren. Während dieser Kette von Öffnungs- und Schließungsvorgängen der Kanäle ändern sich also vorübergehend die Membranleitfähigkeiten für verschiedene Ionen. Die damit verbundenen kurzzeitig auftretenden Ionenströme führen gemeinsam zu einem charakteristischen Potenzialverlauf. Dessen Form ist zellbezogen die gleiche, unabhängig von der Stärke des auslösenden überschwelligen Reizes. Die kurzzeitigen Änderungen des Potentials breiten sich nun (elektrotonisch) auf den benachbarten Membranbereich aus und können dann erregend auch hier wieder zum Aktionspotential führen, was die Grundlage der Erregungsleitung ist.
Voraussetzung für die Ausbildung eines Aktionspotentials sind besondere Eigenschaften der [[Plasmamembran]] der Zelle. Die spezifische Ausstattung mit verschiedenen Gruppen von [[Ionenkanal|Ionenkanälen]] spiegelt sich in Kennzeichen der Verlaufsform wider. Zu einer  Erregung kommt es, wenn sich das Membranpotential vom Ruhewert entfernt und in Richtung weniger negativer Werte verschiebt. Erreicht diese anfängliche ''Vordepolarisation'' eine bestimmte Schwelle, das sogenannte [[Schwellenpotential]] (etwa bei −55&nbsp;mV), werden [[Spannungsgesteuerter Ionenkanal|spannungsgesteuerte Ionenkanäle]] aktiviert, die sich in verketteter Abfolge öffnen, damit Ionenströme ermöglichen, und wieder inaktivieren.
 
Während dieser Kette von Öffnungs- und Schließungsvorgängen der Kanäle ändern sich also vorübergehend die Membranleitfähigkeiten für verschiedene Ionen. Die damit verbundenen kurzzeitig auftretenden Ionenströme führen gemeinsam zu einem charakteristischen Potentialverlauf. Dessen Form ist zellbezogen die gleiche, unabhängig von der Stärke des auslösenden überschwelligen Reizes. Die kurzzeitigen Änderungen des Potentials breiten sich nun (elektrotonisch) auf den benachbarten Membranbereich aus und können dann erregend auch hier wieder zum Aktionspotential führen, was die Grundlage der Erregungsleitung ist.


== Potentialverlauf ==
== Potentialverlauf ==
[[Datei:Aktionspotential.svg|mini|Drei Potenzialverläufe nach verschieden starken Reizen (jeweils bei der Pfeilmarke). Das Ruhepotenzial liegt bei −70&nbsp;mV (gestrichelte Line). Zwei unterschwellige Reize erhöhen das Membranpotenzial auf maximal −65 bzw. −60&nbsp;mV. In beiden Fällen kehrt das Membranpotenzial unspektakulär auf seinen Ausgangswert zurück. Nach dem stärksten Reiz entwickelt sich ab dem Schwellenwert von -55&nbsp;mV die als Aktionspotenzial bezeichnete Eigendynamik.|alternativtext=vgl. http://www.duden.de/rechtschreibung/Schwellenwert]]
[[Datei:Aktionspotential.svg|mini|Drei Potentialverläufe nach verschieden starken Reizen (jeweils bei der Pfeilmarke). Das Ruhepotential liegt bei −70&nbsp;mV (gestrichelte Line). Zwei unterschwellige Reize erhöhen das Membranpotential auf maximal −65 bzw. −60&nbsp;mV. In beiden Fällen kehrt das Membranpotential unspektakulär auf seinen Ausgangswert zurück. Nach dem stärksten Reiz entwickelt sich ab einem Schwellenpotential von ungefähr −55&nbsp;mV die als Aktionspotential bezeichnete Eigendynamik.]]


Ausgehend vom Ruhemembranpotential, das bei Neuronen je nach Zelltyp zwischen −90 und −70&nbsp;mV liegt, werden vier Phasen des Aktionspotentials unterschieden:
Ausgehend vom Ruhemembranpotential, das bei Neuronen je nach Zelltyp zwischen −90 und −70&nbsp;mV liegt, werden vier Phasen des Aktionspotentials unterschieden:
# In der ''Initiationsphase'' treibt ein Reiz die negative Spannung in Richtung null (''Depolarisation''). Dies kann langsam oder schnell geschehen und ist unterhalb des [[Schwellenpotential]]s umkehrbar. Solch ein Reiz kann ein sich räumlich näherndes Aktionspotential sein oder ein post[[Synapse|synaptischer]] Ionenstrom.<ref name="Schmidt" />
# In der ''Initiationsphase'' treibt ein Reiz die negative Spannung in Richtung null (''Depolarisation''). Dies kann langsam oder schnell geschehen und ist unterhalb des [[Schwellenpotential]]s umkehrbar. Solch ein Reiz kann ein sich räumlich näherndes Aktionspotential sein oder ein post[[Synapse|synaptischer]] Ionenstrom.<ref name="Schmidt" />
# Falls das Schwellenpotential überschritten wird, beschleunigt sich die Depolarisation stark (''Aufstrich''). Das Membranpotenzial wird sogar positiv ([[Überschwingen|Overshoot]]).
# Falls das Schwellenpotential überschritten wird, beschleunigt sich die Depolarisation stark (''Aufstrich''). Das Membranpotential wird sogar positiv (''[[Überschwingen|Overshoot]]'').
# Auf das Maximum bei +20 bis +30&nbsp;mV folgt die Rückkehr in Richtung Ruhepotential (''Repolarisation'').
# Auf das Maximum bei +20 bis +30&nbsp;mV folgt die Rückkehr in Richtung Ruhepotential (''Repolarisation'').
# In vielen Neuronen wird das Ruhepotenzial zunächst unterschritten, bis z.&nbsp;B. −90&nbsp;mV, und schließlich von negativeren Werten her erreicht. Dies wird als ''Hyperpolarisation'' oder ''hyperpolarisierendes Nachpotential'' bezeichnet. Während der Hyperpolarisation kann noch kein weiteres Aktionspotential ausgelöst werden, woraus sich die Maximalfrequenz von Aktionspotentialfeuer ergibt (der Begriff ''Feuern'' wird auch in wissenschaftlicher Literatur für das Generieren von Aktionspotentialen benutzt).
# In vielen Neuronen wird das Ruhepotential zunächst unterschritten, bis z.&nbsp;B. −90&nbsp;mV, und schließlich von tieferen negativen Werten her wieder erreicht. Dies wird als ''Hyperpolarisation'' oder ''hyperpolarisierendes Nachpotential'' bezeichnet. Während der Hyperpolarisation kann noch kein weiteres Aktionspotential ausgelöst werden.


Ein Aktionspotential dauert etwa 1–2&nbsp;ms in [[Nervenzelle|Neuronen]], kann sich aber auch über einige hundert [[Millisekunde]]n (im Herzen) erstrecken.
Der zeitliche Verlauf eines Aktionspotentials kann sich über einige hundert [[Millisekunde]]n hinziehen, beispielsweise in Herzmuskelzellen. Bei Nervenzellen hingegen dauert ein Aktionspotential nur etwa 1–2&nbsp;ms. Danach kann ein weiteres Aktionspotential ausgelöst werden, allerdings nicht prompt, sondern erst nach einer gewissen Zeitspanne. Die Zelle befindet sich schon während der Repolarisation in dieser sogenannten ''Refraktärphase'', bis sie wieder unter gleichen Bedingungen ein Aktionspotential bilden kann.


Bereits während der Repolarisation befindet sich die Zelle in der ''Refraktärphase''. Während dieser Phase kann zunächst kein (''absolute Refraktärzeit'', ca. 0,5&nbsp;ms) und danach nur mit erhöhtem Reiz (erhöhtes Schwellenpotential innerhalb der ''relativen Refraktärzeit'', ca. 3,5&nbsp;ms) ein weiteres Aktionspotential erzeugt werden.
Man unterscheidet hierbei die ''absolute Refraktärzeit'' (ca. 0,5&nbsp;ms bei Neuronen), in der gar kein Aktionspotential auslösbar ist, von der ''relativen Refraktärzeit'' (ca. 3,5&nbsp;ms bei Neuronen), in der wegen des erhöhten Schwellenpotentials dafür stärkere Reizstärken nötig sind bzw. nur ein deformierter Potentialverlauf auszulösen ist. Von den Refraktärzeiten hängt die Maximalfrequenz ab, mit der ein Neuron Aktionspotentiale bilden und in Serie als Signale weiterleiten kann.


== Ursachen ==
== Ursachen ==
Das Verständnis des Aktionspotentials setzt das Verständnis des Gleichgewichtspotentials für einzelne Ionen voraus, wie es im Artikel [[Membranpotential]] beschrieben ist. Diese Spannung hängt vom Konzentrationsverhältnis außen/innen ab und kann mit der [[Nernst-Gleichung]] berechnet werden. Sind nur Kaliumkanäle geöffnet, stellt sich das Nernst-Potential von Kalium (−90&nbsp;mV) ein, sind nur Natriumkanäle geöffnet, das Nernst-Potential von Natrium (+60&nbsp;mV).
Das Verständnis des Aktionspotentials setzt das Verständnis des Gleichgewichtspotentials für einzelne Ionen voraus, wie es im Artikel [[Membranpotential]] beschrieben ist. Diese Spannung hängt vom Konzentrationsverhältnis außen/innen ab und kann mit der [[Nernst-Gleichung]] berechnet werden. Sind nur Kaliumkanäle geöffnet, stellt sich das Nernst-Potential von Kalium (−90&nbsp;mV) ein, sind nur Natriumkanäle geöffnet, das Nernst-Potential von Natrium (+60&nbsp;mV).


Ist die Membran sowohl für Kalium als auch für Natrium durchlässig, stellt sich diejenige Spannung ein, bei der die Summe beider Ströme null ist. Das Membranpotential liegt dabei umso näher am Nernst-Potential eines Ions, je größer die Permeabilität für dieses Ion ist; quantitativ wird dies durch die [[Goldman-Gleichung]] beschrieben. Bei [[Ruhemembranpotential]] sind vornehmlich die Kaliumkanäle geöffnet, woraus sich die niedrige Spannung von etwa –70&nbsp;mV erklärt. Während eines Aktionspotentials überwiegt dagegen kurzzeitig die Permeabilität für Natrium. Sämtliche Potentiale, die im Verlauf eines Aktionspotentials auftreten, ergeben sich aus den Permeabilitäten zum jeweiligen Zeitpunkt.
Ist die Membran sowohl für Kalium als auch für Natrium durchlässig, stellt sich diejenige Spannung ein, bei der die Summe beider Ströme null ist. Das Membranpotential liegt dabei umso näher am Nernst-Potential eines Ions, je größer die [[Membranpermeabilität|Permeabilität]] der Membran für dieses Ion ist; quantitativ wird dies durch die [[Goldman-Gleichung]] beschrieben. Bei dem [[Ruhemembranpotential]] sind vornehmlich die Kaliumkanäle geöffnet, woraus sich die niedrige Spannung von etwa −70&nbsp;mV erklärt. Während eines Aktionspotentials überwiegt dagegen kurzzeitig die Permeabilität für Natrium. Sämtliche Potentiale, die im Verlauf eines Aktionspotentials auftreten, ergeben sich aus den Permeabilitäten zum jeweiligen Zeitpunkt.


Die Ströme, die im Verlauf eines Aktionspotentials auftreten, sind so klein, dass sie die Konzentrationen auf beiden Seiten der Membran nicht wesentlich verändern. Damit die Konzentrationsverhältnisse aber langfristig konstant bleiben, ist die Arbeit der [[Natrium-Kalium-Pumpe]] nötig, die unter [[Adenosintriphosphat|ATP]]-Verbrauch drei Natriumionen im Austausch gegen zwei Kaliumionen aus der Zelle schafft.
Die Ströme, die im Verlauf eines Aktionspotentials auftreten, sind so klein, dass sie die Konzentrationen auf beiden Seiten der Membran nicht wesentlich verändern. Damit die Konzentrationsverhältnisse aber langfristig konstant bleiben, ist die Arbeit der [[Natrium-Kalium-Pumpe]] nötig, die unter [[Adenosintriphosphat|ATP]]-Verbrauch drei Natriumionen im Austausch gegen zwei Kaliumionen aus der Zelle schafft.


=== Eigenschaften der Ionenkanäle ===
=== Eigenschaften der Ionenkanäle ===
Wie im Artikel über das [[Ruhemembranpotential]] beschrieben, verfügen Zellen über eine Reihe von Ionenkanälen. Für das tierische Aktionspotential sind vor allem bestimmte für [[Natrium]]- bzw. [[Kalium]]-Ionen spezifische Ionenkanäle verantwortlich. Diese Kanäle öffnen sich in Abhängigkeit vom Membranpotential, d.&nbsp;h., sie sind [[Spannungsaktivierung|spannungsaktiviert]]. In Ruhe ist das Membranpotential negativ.
Wie im Artikel über das [[Ruhemembranpotential]] beschrieben, verfügen Zellen über eine Reihe von Ionenkanälen. Für das tierische Aktionspotential sind vor allem bestimmte für [[Natrium]]- bzw. [[Kalium]]-Ionen spezifische Ionenkanäle verantwortlich. Diese Kanäle öffnen sich in Abhängigkeit vom Membranpotential, sie sind somit [[Spannungsaktivierung|spannungsaktiviert]]. In Ruhe ist das Membranpotential negativ.


So ist beispielsweise ein spannungsabhängiger Natriumkanal (Na<sub>v</sub>-Kanal) (aufgrund seiner Eigenschaft auch als ''schneller Natriumkanal'' bezeichnet) beim Ruhemembranpotential ''geschlossen und aktivierbar''. Bei Depolarisation über einen kanalspezifischen Wert erfolgt eine Konformationsänderung. Der Kanal wird dadurch durchlässig für Ionen und geht in den Zustand ''offen'' über. Der Kanal bleibt aber trotz anhaltender Depolarisation nicht offen, sondern wird innerhalb weniger Millisekunden unabhängig vom Membranpotential wieder geschlossen. Das geschieht meist durch einen im Zytoplasma liegenden Teil des Kanalproteins, die Inaktivierungsdomäne, die sich gleich einem „Stöpsel“ in den Kanal setzt und diesen verstopft. Diesen Zustand bezeichnet man als ''geschlossen und inaktiviert''. Der Übergang in den Zustand ''geschlossen und aktivierbar'' bzw. ''deaktiviert'' ist nur nach einer Hyperpolarisation (oder vollständiger Repolarisation bei Herzmuskelzellen) möglich, die den Kanal zunächst schließt, sodass er danach wieder durch eine Depolarisation geöffnet werden kann. Der Übergang vom Zustand ''geschlossen und inaktiviert'' zum Zustand ''offen'' ist im vereinfachten Modell nicht möglich.
So ist beispielsweise ein spannungsabhängiger Natriumkanal (Na<sub>v</sub>-Kanal) (aufgrund seiner Eigenschaft auch als ''schneller Natriumkanal'' bezeichnet) beim Ruhemembranpotential ''geschlossen und aktivierbar''. Bei Depolarisation über einen kanalspezifischen Wert erfolgt eine Konformationsänderung der Transmembranproteine. Der Kanal wird dadurch durchlässig für Ionen und geht in den Zustand ''offen'' über. Doch bleibt der Kanal trotz anhaltender Depolarisation nicht offen, sondern wird innerhalb weniger Millisekunden wieder geschlossen, unabhängig vom Membranpotential. Das geschieht meist durch einen im Zytoplasma liegenden Teil des Kanalproteins, die Inaktivierungsdomäne, die sich gleich einem „Stöpsel“ in den Kanal setzt und diesen verstopft. Diesen Zustand bezeichnet man als ''geschlossen und inaktiviert''.


In der Literatur wird auch beschrieben, dass ein ''geschlossener und inaktivierter'' Kanal nach Repolarisierung zunächst kurzzeitig im Zustand ''offen'' vorliegt, bevor er durch die Konformationsänderung direkt nach ''geschlossen aktivierbar'' übergeht. In jedem Fall erfolgt die Wiederaktivierung nur nach einer Hyperpolarisation (oder vollständiger Repolarisation bei Herzmuskelzellen), ein Übergang ''inaktiviert'' nach ''offen'' ist bei repolarisierter Membran nicht möglich.
Der anschließende Übergang in den Zustand ''geschlossen und aktivierbar'' ist nur nach einer Hyperpolarisation (oder vollständiger Repolarisation bei Herzmuskelzellen) möglich. So bleibt der Kanal zunächst ''geschlossen'', wird nach einer Repolarisation bzw. Hyperpolarisation  ''aktivierbar'' und kann erst danach wieder durch eine Depolarisation geöffnet werden. Nach einer Öffnung bleibt der Kanal nur kurzzeitig offen, da er von selbst rasch in die geschlossene Form übergeht und inaktiviert wird. Ein Übergang von ''inaktiviert'' nach ''offen'' jedoch ist bei depolarisierter Membran nicht möglich.


Nicht alle Kanäle öffnen sich gleichzeitig bei demselben Wert des Membranpotentials. Vielmehr ist die Wahrscheinlichkeit eines Kanals, in einen bestimmten Zustand überzugehen, spannungsabhängig. Aus der rein statistischen Verteilung stellt sich ein Gleichgewicht ein, so dass eine größere Zahl von Kanälen in der Summe sehr gut das oben geschilderte Modell erfüllt.
Nicht alle Kanäle öffnen sich gleichzeitig bei demselben Wert des Membranpotentials. Vielmehr ist die Wahrscheinlichkeit eines Kanals, in einen bestimmten Zustand überzugehen, spannungsabhängig. Aus der rein statistischen Verteilung stellt sich ein Gleichgewicht so ein, dass eine größere Zahl von Kanälen in der Summe das oben geschilderte Modell erfüllt.


Auch ist der Zeitaufwand, um von einem Zustand in den anderen überzugehen, kanalspezifisch. Im geschilderten Natriumkanal läuft die Konformationsänderung von ''geschlossen'' nach ''offen'' in weniger als einer Millisekunde ab, während ein Kaliumkanal Zeit in der Größenordnung von 10&nbsp;ms benötigt.
Auch ist der Zeitaufwand, von einem Zustand in den anderen überzugehen, kanalspezifisch. Im geschilderten Natriumkanal läuft die Konformationsänderung von ''geschlossen'' nach ''offen'' in weniger als einer Millisekunde ab, während ein Kaliumkanal dafür rund 10&nbsp;ms benötigt.


Abgesehen von der Spannung gibt es noch eine Reihe weiterer, oft chemischer Faktoren zum Öffnen bzw. Schließen der Kanäle. Für das Aktionspotential sind davon nur noch zwei von gewisser (siehe unten) Bedeutung. Zum einen sind die einwärtsgleichrichtenden Kaliumkanäle (K<sub>ir</sub>) zwar an sich nicht regelbar. Es gibt jedoch niedermolekulare, positiv geladene Stoffe wie das [[Spermin]], die bei ausreichender Depolarisation die Kanalporen verstopfen können (Kanalblock, Porenblock). Ein weiterer Mechanismus betrifft Kaliumkanäle, die öffnen, wenn intrazellulär Calciumionen (normalerweise intrazellulär in sehr niedriger Konzentration) an sie binden.
Abgesehen von der Spannung gibt es noch eine Reihe weiterer, oft chemischer Faktoren zum Öffnen bzw. Schließen der Kanäle. Für das Aktionspotential sind davon nur noch zwei von gewisser Bedeutung (siehe unten). Zum einen sind die einwärtsgleichrichtenden Kaliumkanäle (K<sub>ir</sub>) zwar an sich nicht regelbar. Es gibt jedoch niedermolekulare, positiv geladene Stoffe wie das [[Spermin]], die bei ausreichender Depolarisation die Kanalporen verstopfen können (Kanalblock, Porenblock). Ein weiterer Mechanismus betrifft Kaliumkanäle, die öffnen, wenn intrazellulär Calciumionen (normalerweise intrazellulär in sehr niedriger Konzentration) an sie binden.


== Ablauf ==
== Ablauf ==
[[Datei:Aktionspotential.jpg|mini|hochkant=2.5|Je unterschiedliche Ionenverteilung kennzeichnen  ausgehend vom Ruhepotential (1) die Phasen der langsamen Vordepolarisierung oder Initiation (2) sowie der schnellen Depolarisierung von Aufstrich samt Overshoot (3), die Repolarisierungsphase (4), die Hyperpolarisierung (5) und die Zeit bis zur Wiederherstellung (6) der Ausgangslage im Verlauf einer Aktionspotentialserie]]
=== Ausgangslage ===
=== Ausgangslage ===
In der Ausgangslage befindet sich die Zelle in Ruhe und weist ihr Ruhemembranpotential auf. Die Natriumkanäle sind nahezu alle geschlossen, nur bestimmte Kaliumkanäle sind geöffnet, die Kaliumionen bestimmen das Ruhemembranpotential. Bei allen Ionenbewegungen wird Richtung und Stärke durch die [[Elektrochemische Triebkraft|elektrochemischen Triebkräfte]] für die jeweiligen Ionen bestimmt. Vor allem Natriumionen strömen schnell in die Zelle, sobald sich die Kanäle dafür öffnen.
In der Ausgangslage befindet sich die Zelle in Ruhe und weist ihr Ruhemembranpotential auf. Die Natriumkanäle sind nahezu alle geschlossen, nur bestimmte Kaliumkanäle sind geöffnet. Die Kaliumionen bestimmen so im Wesentlichen das Ruhemembranpotential. Bei allen Ionenbewegungen werden Richtung und Stärke durch die [[Elektrochemische Triebkraft|elektrochemischen Triebkräfte]] für die jeweiligen Ionen bestimmt. Vor allem Natriumionen strömen infolge des herrschenden [[Konzentrationsgefälle]]s schnell in die Zelle, sobald sich die Kanäle dafür öffnen.


=== Initiationsphase ===
=== Initiationsphase ===
[[Datei:Aktionspotential.jpg|mini|hochkant=2.5|Unterschiedliche Ionenverteilung im Neuron während Aktionspotentials.|alternativtext=Ionenströme im Axon (dargestellt sind die obere und untere Axonmembran) während eines Aktionspotentials.]]
Während der Initiationsphase wird das Membranpotential so verändert, dass es vom Ruhepotential abweicht in Richtung Null, bis die Verringerung des Ladungsgefälles ein gewisses Schwellenpotential erreicht. Diese Vor-Depolarisierung kann im Experiment durch eine Reizelektrode, am Axonhügel durch die Öffnung von postsynaptischen Ionenkanälen (Na<sup>+</sup>, Ca<sup>2+</sup>) oder an der Axonmembran durch ein [[Elektrotonus|elektrotonisch]] weitergeleitetes (Aktions)potential aus einer benachbarten Membranregion geschehen.
 
Während der Initiationsphase muss durch einen Reiz das Membranpotential zunehmen, bis die Depolarisation einen bestimmten Schwellenwert erreicht. Das kann im Experiment durch eine Reizelektrode, am Axonhügel durch die Öffnung von postsynaptischen Ionenkanälen (Na<sup>+</sup>, Ca<sup>2+</sup>) oder an der Axonmembran durch ein [[Elektrotonus|elektrotonisch]] weitergeleitetes (Aktions)potential aus einer benachbarten Membranregion geschehen.


Erhöht sich das Membranpotential um 20&nbsp;mV (beispielsweise von −70 auf −50&nbsp;mV), tritt der Porenblock der K<sub>ir</sub>-Kanäle durch Spermin ein, was die nachfolgende sehr schnelle Depolarisation und das Erreichen des Schwellenwerts der Natriumkanäle ermöglicht, die sonst durch ausströmende Kaliumionen, die in Richtung des Ruhepotentials wirken würden, zumindest vermindert würden.
Bei derartigen vordepolarisierenden Veränderungen des Membranpotentials, beispielsweise von −70 auf −60&nbsp;mV und darüber hinaus, können K<sub>ir</sub>-Kanäle durch Porenblocker wie Spermin versperrt werden. Damit wird ein in Richtung Ruhepotential gleichrichtend wirkender Kaliumstrom gedämpft. Dies erleichtert das Erreichen des Schwellenpotentials und beschleunigt die folgende Depolarisation bei Öffnung von Natriumkanälen.


=== Aufstrich und Overshoot ===
=== Aufstrich und Overshoot ===
Bei −60&nbsp;mV fangen die spannungsabhängigen Natriumkanäle Na<sub>V</sub> an, in den ''offenen'' Zustand überzugehen. Natriumionen, die mit ihrer hohen Außenkonzentration weit von ihrem elektrochemischen Gleichgewicht entfernt sind, strömen ein, die Zelle depolarisiert, dadurch werden weitere spannungsempfindliche Kanäle geöffnet; noch mehr Ionen können einströmen: Der schnelle Aufstrich führt zum ''Overshoot'' (Umpolarisierung/Ladungsumkehr). Die „explosionsartige“ Depolarisierung nach Überschreiten des Schwellenwerts beruht auf ''[[Positive Rückkopplung|positiver Rückkopplung]]''.
Bei ungefähr −55&nbsp;mV fangen die spannungsabhängigen Natriumkanäle Na<sub>V</sub> an, in den ''offenen'' Zustand überzugehen. Natriumionen, die mit ihrer hohen Außenkonzentration weit von ihrem elektrochemischen Gleichgewicht entfernt sind, strömen ein, die Zelle depolarisiert. Dadurch werden weitere spannungsempfindliche Kanäle geöffnet, und noch mehr Ionen können einströmen: Der schnelle Aufstrich führt zum ''Overshoot'' (Umpolarisierung/Ladungsumkehr). Die „explosionsartige“ Depolarisierung nach Überschreiten des Schwellenpotentials kommt also durch eine [[positive Rückkopplung]] zustande.


=== Repolarisation ===
=== Repolarisation ===
Noch bevor das Potentialmaximum im Overshoot erreicht ist, beginnen die Na<sub>V</sub>-Kanäle zu inaktivieren. Zugleich kommen die spannungsabhängigen Kaliumkanäle K<sub>V</sub> ins Spiel; K<sup>+</sup>-Ionen strömen aus der Zelle heraus. Sie haben zwar ihre Schwelle bei ähnlichen Werten, brauchen aber wesentlich länger für das Öffnen, womit sie jetzt erst langsam beginnen. Während des Maximums der Na-Leitfähigkeit sind die Kaliumkanäle gerade erst zur Hälfte geöffnet und erreichen ihr Maximum, wenn fast alle Na-Kanäle schon inaktiviert sind. Dadurch liegt das Na-Maximum etwas vor dem Spannungsmaximum im Overshoot, während das K-Maximum in die Phase der steilsten Repolarisation fällt.
Noch bevor das Potentialmaximum im Overshoot erreicht ist, werden erste Na<sub>V</sub>-Kanäle inaktiv. Zugleich kommen nun die spannungsabhängigen Kaliumkanäle K<sub>V</sub> ins Spiel, K<sup>+</sup>-Ionen strömen aus der Zelle heraus. Diese Ionenkanäle haben zwar ihre Schwelle bei ähnlichen Werten, brauchen aber wesentlich länger für den Öffnungsvorgang. Während des Maximums der Na-Leitfähigkeit sind diese Kaliumkanäle erst zur Hälfte geöffnet; sie erreichen ihr Maximum, wenn fast alle Na-Kanäle schon inaktiviert sind. Daher liegt das Na-Leitfähigkeit-Maximum etwas vor dem Spannungsmaximum im Overshoot, das K-Leitfähigkeit-Maximum aber in der Phase der steilsten Repolarisation.


Während der Repolarisation nähert sich das Potential wieder dem Ruhepotential an. Die K<sub>V</sub> schließen, der Porenblock der K<sub>ir</sub> wird aufgehoben, was wichtig für die Stabilisierung des Ruhepotentials ist. Die Na<sub>V</sub>-Kanäle werden langsam wieder aktiviert. Die Repolarisation wird teilweise auch allgemein als Hyperpolarisation bezeichnet, wenn dieser Begriff als Abnahme bzw. Negativierung eines Membranpotentials definiert ist.
Während der Repolarisation nähert sich das Potential wieder dem Ruhepotential. Die K<sub>V</sub>-Kanäle schließen, und ein Porenblock der K<sub>ir</sub> wird aufgehoben, was für die Stabilisierung des Ruhepotentials wichtig ist. Die Na<sub>V</sub>-Kanäle werden langsam wieder aktivierbar. Die Repolarisation auf zum Beispiel −80&nbsp;mV wird gelegentlich auch als Hyperpolarisation bezeichnet, wenn dieser Begriff als zunehmende Negativierung eines Membranpotentials definiert ist.


=== Nachhyperpolarisation ===
=== Nachhyperpolarisation ===
In vielen Zellen (vor allem Neuronen) ist noch eine ''Hyperpolarisation'' zu beobachten. Sie erklärt sich durch eine auch weiterhin noch erhöhte Kaliumleitfähigkeit, wodurch das Potential noch näher am Kaliumgleichgewichtspotential liegt. Die Leitfähigkeit ist höher, weil während des Aktionspotentials eingeströmte Calciumionen entsprechende Kaliumkanäle öffnen, und normalisiert sich erst, wenn der Calciumspiegel wieder absinkt. Bezeichnet man die Repolarisation (und damit die allgemeine Senkung eines Membranpotentials) bereits als Hyperpolarisation, wird dieser Vorgang einer zusätzlichen Absenkung auch als ''Nachhyperpolarisation'' bezeichnet.
In vielen Zellen, vor allem Nervenzellen, ist noch eine über das Ruhepotential hinausgehende ''Hyperpolarisation'' zu beobachten. Sie erklärt sich aus einer weiterhin erhöhten Kaliumleitfähigkeit, wodurch das Potential noch näher am Kalium-[[Gleichgewichtspotential]] liegt. Die K-Leitfähigkeit ist erhöht, weil während des Aktionspotentials eingeströmte Calciumionen hier besondere Kaliumkanäle öffnen; sie normalisiert sich erst, wenn der intrazelluläre Calciumspiegel wieder absinkt. Bezeichnete man die Repolarisation bereits als Hyperpolarisation, wird dieser Vorgang einer zusätzlichen Absenkung dann ''Nachhyperpolarisation'' genannt.


=== Refraktärzeit ===
=== Refraktärzeit ===
Nach dem Abklingen des Aktionspotentials ist das Axon für eine kurze Zeit nicht [[Erregung (Physiologie)|erregbar]]. Bei den Arbeitsmyokardzellen des Herzens ist diese Phase – dort auch „Plateauphase“ genannt – besonders lang, was auf den sog. „langsamen Calcium-Einstrom“ zurückgeführt wird. (Dieser Umstand ist wichtig, um ein „Zurücklaufen“ der Erregung zu verhindern (Unidirektionalität)). Diese Dauer, die ''[[Refraktärzeit]]'', ist bestimmt durch die Zeit, die die Na<sub>V</sub> zur Wiederaktivierung benötigen. Während der ''absoluten Refraktärphase'' kurz nach dem Overshoot, wenn die Repolarisation noch im Gange ist, können diese Kanäle überhaupt nicht wieder öffnen. Man sagt auch, der Schwellenwert liegt bei unendlich. Während der ''relativen Refraktärphase'' benötigt man stärkere Reize und erhält schwächere Aktionspotentiale. Hier bewegt sich der Schwellenwert von unendlich wieder auf seinen normalen Wert zu.
Nach dem Abklingen des Aktionspotentials ist eine Zelle für eine kurze Zeit nicht [[Erregung (Physiologie)|erregbar]]. Bei den [[Myokard|Arbeitsmyokardzellen]] des Herzens ist diese Phase – hier auch „Plateauphase“ genannt – besonders lang anhaltend, was auf einen „langsamen Calcium-Einstrom“ zurückgeführt wird. Dieser Umstand ist bedeutend, denn so wird ein rückläufiger Wiedereintritt der Erregung verhindert (Unidirektionalität). Die Dauer dieser Zeitspanne, die ''[[Refraktärzeit]]'', ist abhängig vom Zeitverlauf der Wiederaktivierung von Na<sub>V</sub>-Kanälen. Während der ''absoluten Refraktärphase'' kurz nach dem Overshoot, wenn die Repolarisation noch im Gange ist, können diese Kanäle überhaupt nicht wieder öffnen. Man sagt auch, der Schwellenwert liegt bei unendlich. Während der ''relativen Refraktärphase'' benötigt man stärkere Reize und erhält schwächere Aktionspotentiale. Hier bewegt sich der Schwellenwert von unendlich wieder auf seinen normalen Wert zu.


== Schwellenpotential ==
== Schwellenpotential ==
Meist wird für die Auslösung eines Aktionspotentials das Überschreiten eines bestimmten [[Schwellenpotential]]s verantwortlich gemacht, ab dem die Natriumkanäle nach Art eines internen Vergleiches<!-- Was ist das? --> lawinenartig aktiviert werden. Trotz aller Bemühungen eine solche ''Feuerschwelle'' zu finden, kann kein fester Spannungswert angegeben werden, der ein Aktionspotential bedingt. Stattdessen feuern Neurone unter einem relativen breiten Band von auslösenden Membranspannungen. Daher ist die Neurowissenschaft von der Vorstellung eines festen Schwellenpotentials abgekommen. Systemtheoretisch lässt sich die Entstehung des Aktionspotentials am ehesten durch eine [[Bifurkation (Mathematik)|Bifurkation]] zwischen passiver und Aktionspotentialdynamik beschreiben, wie es beispielsweise beim [[Hodgkin-Huxley-Modell]] der Fall ist. Trotzdem ist es, auch in der Fachliteratur, durchaus üblich, weiterhin von einer Feuerschwelle zu sprechen, um den ''grauen Bereich zwischen Ruhe und Aktionspotential'' zu kennzeichnen.
Meist wird die Auslösung eines Aktionspotentials beschrieben als das Überschreiten eines bestimmten [[Schwellenpotential]]s, ab dem Natriumkanäle konzertiert geöffnet werden. Trotz aller Bemühungen eine solche exakte „Feuerschwelle“ zu finden, kann kein fixer Spannungswert angegeben werden als Bedingung für ein Aktionspotential. Stattdessen feuern Neurone auf einem relativen breiten Band auslösender Membranspannungen. Daher wird neurowissenschaftlich von der Vorstellung eines festen Wertes für das Schwellenpotential Abstand genommen. Systemtheoretisch lässt sich der Entstehungsprozess eines Aktionspotentials am ehesten durch eine [[Bifurkation (Mathematik)|Bifurkation]] wie beispielsweise beim [[Hodgkin-Huxley-Modell]] beschreiben. Dennoch ist es, auch in der Fachliteratur, durchaus üblich, weiterhin von einer Schwelle zu sprechen, um den „grauen Bereich zwischen Ruhe und Aktionspotential“ abgrenzend zu kennzeichnen.


== Tierische Aktionspotentiale ==
== Tierische Aktionspotentiale ==
Außer durch spannungsaktivierte Natriumkanäle können Aktionspotentiale bei [[Purkinjezelle]]n in ihrer Häufigkeit durch spannungsaktivierte [[Calciumkanal|Calciumkanäle]] moduliert werden.<ref>E. Hosy, C. Piochon, E. Teuling, L. Rinaldo, C. Hansel: ''SK2 channel expression and function in cerebellar Purkinje cells.'' In: ''The Journal of physiology.'' Band 589, Pt 14Juli 2011, S.&nbsp;3433–3440, {{ISSN|1469-7793}}. [[doi:10.1113/jphysiol.2011.205823]]. PMID 21521760. {{PMC|3167108}}.</ref><ref>N. Zheng, I. M. Raman: ''Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei.'' In: ''Cerebellum.'' Band 9, Nummer 1, März 2010, S.&nbsp;56–66, {{ISSN|1473-4230}}. [[doi:10.1007/s12311-009-0140-6]]. PMID 19847585. {{PMC|2841711}}.</ref>
Bei [[Purkinjezelle]]n können Aktionspotentiale in ihrer Häufigkeit außer durch spannungsaktivierte Natriumkanäle auch durch spannungsaktivierte [[Calciumkanal|Calciumkanäle]] moduliert werden.<ref>E. Hosy, C. Piochon, E. Teuling, L. Rinaldo, C. Hansel: ''SK2 channel expression and function in cerebellar Purkinje cells.'' In: ''The Journal of physiology.'' Band 589, Pt 14, Juli 2011, S.&nbsp;3433–3440, {{ISSN|1469-7793}}. [[doi:10.1113/jphysiol.2011.205823]]. PMID 21521760. {{PMC|3167108}}.</ref><ref>N. Zheng, I. M. Raman: ''Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei.'' In: ''Cerebellum.'' Band 9, Nummer 1, März 2010, S.&nbsp;56–66, {{ISSN|1473-4230}}. [[doi:10.1007/s12311-009-0140-6]]. PMID 19847585. {{PMC|2841711}}.</ref>


== Pflanzliche Aktionspotentiale ==
== Pflanzliche Aktionspotentiale ==
Prinzipiell sind [[Pflanzenzelle|Zellen von Pflanzen]] und [[Pilze]]n<ref name="Slayman_1976" /> auch elektrisch erregbar. Der Hauptunterschied zum tierischen Aktionspotential besteht darin, dass die Depolarisierung nicht durch Eintritt von positiven Natriumionen geschieht, sondern durch Ausfluss von negativen ''Chloridionen''.<ref name="Beilby_2007">{{cite journal | author = Beilby MJ | date = 2007 | title = Action potentials in charophytes | journal = Int. Rev. Cytol. | volume = 257 | pages = 43–82 | doi = 10.1016/S0074-7696(07)57002-6 | pmid = 17280895}}</ref><ref name="Mummert_1991">{{cite journal | author = Mummert H, Gradmann D | date = 1991 | title = Action potentials in ''[[Acetabularia]]'': measurement and simulation of voltage-gated fluxes | journal = Journal of Membrane Biology | volume = 124 | pages = 265–273 | pmid = 1664861}}</ref><ref name="Gradmann_2001">{{cite journal | author = Gradmann D | date = 2001 | title = Models for oscillations in plants | journal = Austr. J. Plant Physiol. | volume = 28 | pages = 577–590}}</ref> Zusammen mit dem darauffolgenden Ausfluss von positiven Kaliumionen, der gleichermaßen in tierischen wie in pflanzlichen Zellen die Repolarisierung bewirkt, bedeutet dies für Pflanzenzellen einen osmotischen Verlust an [[Kaliumchlorid]], wohingegen das tierische Aktionspotential durch gleiche Mengen von Natriumeinstrom und Kaliumausstrom in der Summe osmotisch neutral ist. Die Koppelung von elektrischen und osmotischen Ereignissen beim pflanzlichen Aktionspotential<ref>{{cite journal | author = Gradmann D, Hoffstadt J | date = 1998 | title = Electrocoupling of ion transporters in plants: Interaction with internal ion concentrations | journal = Journal of Membrane Biology | volume = 166 | pages = 51–59 | pmid = 9784585}}</ref> legt nahe, dass elektrische Erregbarkeit bei den gemeinsamen einzelligen Vorfahren von Tier- und Pflanzenzellen der Regulierung des Salzhaushalts unter veränderlichen [[Salinität]]sbedingungen diente, während die osmotisch neutrale Fortleitung von Signalen durch tierische Vielzeller mit nahezu konstanter Salinität eine evolutionär jüngere Errungenschaft darstellt.<ref>D. Gradmann, H. Mummert: ''Plant action potentials.'' In: R. M. Spanswick, W. J. Lucas, J. Dainty: ''Plant Membrane Transport: Current Conceptual Issues.'' Elsevier Biomedical Press, Amsterdam 1980, ISBN 0-444-80192-8, S. 333–344.</ref> Demnach hat sich die Signalfunktion von Aktionspotentialen in einigen Gefäßpflanzen (beispielsweise ''[[Mimosa pudica]]'') unabhängig von derjenigen in tierischen Zellen herausgebildet.
Prinzipiell sind [[Pflanzenzelle|Zellen von Pflanzen]] und [[Pilze]]n<ref name="Slayman_1976" /> auch elektrisch erregbar. Der Hauptunterschied zum tierischen Aktionspotential besteht darin, dass die Depolarisierung nicht durch Einstrom von (positiv geladenen) Natriumionen geschieht, sondern durch Ausstrom von (negativ geladenen) ''Chloridionen''.<ref name="Beilby_2007">{{Literatur |Autor=M. J. Beilby |Titel=Action potentials in charophytes |Sammelwerk=Int. Rev. Cytol. |Band=257 |Datum=2007 |Seiten=43–82 |DOI=10.1016/S0074-7696(07)57002-6 |PMID=17280895}}</ref><ref name="Mummert_1991">{{Literatur |Autor=H. Mummert, D. Gradmann |Titel= Action potentials in ''[[Acetabularia]]'': measurement and simulation of voltage-gated fluxes |Sammelwerk=Journal of Membrane Biology |Band=124 |Datum=1991 |Seiten=265–273 |PMID=1664861}}</ref><ref name="Gradmann_2001">{{Literatur |Autor=D. Gradmann |Titel=Models for oscillations in plants |Sammelwerk=Austr. J. Plant Physiol. |Band=28 |Datum=2001 |Seiten=577–590}}</ref> Zusammen mit dem darauffolgenden Austritt von (positiv geladenen) Kaliumionen der gleichermaßen in tierischen wie in pflanzlichen Zellen die Repolarisierung bewirkt bedeutet dies für Pflanzenzellen einen osmotischen Verlust an [[Kaliumchlorid]]; dagegen ist das tierische Aktionspotential durch gleiche Mengen von Natriumeinstrom und Kaliumausstrom in der Summe osmotisch neutral.
 
Die Kopplung von elektrischen und osmotischen Ereignissen beim pflanzlichen Aktionspotential<ref>{{Literatur |Autor=D. Gradmann, J. Hoffstadt |Titel=Electrocoupling of ion transporters in plants: Interaction with internal ion concentrations |Sammelwerk=Journal of Membrane Biology |Band=166 |Datum=1998 |Seiten=51–59 |PMID=9784585}}</ref> legt nahe, dass elektrische Erregbarkeit bei den gemeinsamen einzelligen Vorfahren von Tier- und Pflanzenzellen der Regulierung des Salzhaushalts unter veränderlichen [[Salinität]]sbedingungen diente, während die osmotisch neutrale Fortleitung von Signalen durch tierische Vielzeller mit nahezu konstanter Salinität eine evolutionär jüngere Errungenschaft darstellt.<ref>D. Gradmann, H. Mummert: ''Plant action potentials.'' In: R. M. Spanswick, W. J. Lucas, J. Dainty: ''Plant Membrane Transport: Current Conceptual Issues.'' Elsevier Biomedical Press, Amsterdam 1980, ISBN 0-444-80192-8, S. 333–344.</ref> Demnach hat sich die Signalfunktion von Aktionspotentialen in einigen Gefäßpflanzen (beispielsweise ''[[Mimosa pudica]]'') unabhängig von derjenigen in tierischen Zellen herausgebildet.


== Literatur ==
== Literatur ==
* Stefan Silbernagl, Agamemnon Despopoulos: ''Taschenatlas der Physiologie.'' 6. Auflage, Thieme Verlagsgruppe, Stuttgart 2003, ISBN 3-13-567706-0.
* Stefan Silbernagl, Agamemnon Despopoulos: ''Taschenatlas der Physiologie.'' 6. Auflage. Thieme Verlagsgruppe, Stuttgart 2003, ISBN 3-13-567706-0.


== Weblinks ==
== Weblinks ==
* [http://www.fsbio-hannover.de/oftheweek/165.htm Aktionspotential oder das Aktionspotential] – Prinzip des Aktionspotential in Wort und Animation bei ''fsbio-hannover.de''
 
* [http://www.informatik.uni-ulm.de/ni/staff/FSchwenker/FlashMoviesOfNeuralNets/ActionPotential/fortleitung1_1.swf Aktionspotenzial Fortleitung] – Flash-Animation in 4 Stufen bei ''informatik.uni-ulm.de''
* [http://www.informatik.uni-ulm.de/ni/staff/FSchwenker/FlashMoviesOfNeuralNets/ActionPotential/fortleitung1_1.swf Aktionspotenzial Fortleitung] – Flash-Animation in 4 Stufen bei ''informatik.uni-ulm.de''


== Einzelnachweise ==
== Einzelnachweise ==
<references>
<references>
<ref name="Schmidt">[[Robert Franz Schmidt|Robert F. Schmidt]]: ''Physiologie des Menschen: Mit Pathophysiologie.'' Springer Verlag, 2007, ISBN 978-3-540-32908-4, S. 88.
<ref name="Schmidt">
[[Robert Franz Schmidt|Robert F. Schmidt]]: ''Physiologie des Menschen: Mit Pathophysiologie.'' Springer Verlag, 2007, ISBN 978-3-540-32908-4, S. 88.
</ref>
</ref>
</references>
</references>
{{Normdaten|TYP=s|GND=4141745-8}}


[[Kategorie:Neurophysiologisches Potenzial]]
[[Kategorie:Neurophysiologisches Potenzial]]
[[Kategorie:Neurobiologie]]
[[Kategorie:Neurobiologie]]
[[Kategorie:Computational Neuroscience]]
[[Kategorie:Computational Neuroscience]]

Aktuelle Version vom 22. Februar 2022, 11:11 Uhr

Als Aktionspotential, abgekürzt AP, wird in der Physiologie eine vorübergehende charakteristische Abweichung des Membranpotentials einer Zelle vom Ruhepotential bezeichnet. Ein Aktionspotential bildet sich selbsttätig mit zelltypischem Verlauf bei einer Erregung (Exzitation) der Zelle und breitet sich als elektrisches Signal über die Zellmembran aus. Umgangssprachlich werden die Aktionspotentiale von Nervenzellen auch „Nervenimpuls“ genannt.

Nur erregbare Zellen können auf Reize oder Signale hin Aktionspotentiale bilden, durch kurzfristige Änderungen der Membranleitfähigkeit infolge von Wechselwirkungen besonderer spannungsgesteuerter Ionenkanäle in ihrer Membran. Deren zeitabhängig unterschiedliche Aktivierung führt zu verschiedenen Ionenströmen mit entsprechend verschobenen Potentialdifferenzen. Daraus resultiert ein Aktionspotentialverlauf, bei dem auf die Phase der Depolarisation nach einem eventuellen Plateau die Phase der Repolarisation folgt, mit nachschwingender Hyperpolarisation. Dieser Vorgang läuft jeweils selbsttätig in typischer Form ab, wenn ein bestimmtes Schwellenpotential überschritten wird, und ist erst nach einer gewissen Refraktärzeit wieder auslösbar.

Fortleitung eines Aktionspotentials über die Membran entlang dem Axon eines Neurons.

Zu den erregbaren Zellen gehören bei Tieren außer ihren Nervenzellen auch Muskelzellen und einige sekretorische Zellen. Nervenzellen nehmen Reize oder Signale von anderen Zellen auf, überführen sie in Membranpotentialveränderungen und können Aktionspotentiale bilden (Erregungsbildung) als zelleigenes Signal, das entlang dem Axon in einer Nervenfaser fortgeleitet (→ Erregungsleitung) und über Synapsen an andere Zellen übertragen wird (→ Erregungsübertragung). Über neuromuskuläre Synapsen werden Muskelzellen erreicht, die ebenfalls erregt werden können und dann Aktionspotentiale bilden, die geleitet über Membraneinstülpungen eine Kontraktion der Muskelfaser bewirken. Über neuroglanduläre Synapsen werden Drüsenzellen erreicht; besondere neuroendokrine Zellen können Aktionspotentiale bilden, denen eine Abgabe von Neurohormonen folgt.

Daneben kommen Aktionspotentiale auch in Einzellern vor – beispielsweise bei Pantoffeltierchen[1] und Kieselalgen[2] – sowie ebenfalls bei mehrzelligen Algen (Armleuchteralgen),[3] Gefäßpflanzen (Mimose)[4] und Pilzen.[5]

Geschichte

Galvani experimentierte an Froschschenkeln
(De viribus electricitatis in motu musculari, Tafel 3[6])

Das Phänomen von Muskelbewegungen infolge elektrischer Kräfte entdeckte der Bologneser Luigi Aloisio Galvani als Zuckung von Schenkeln sezierter Frösche.[7] Dessen 1791[6] veröffentlichen Erkenntnisse über eine „tierische elektrische Flüssigkeit“ in Nerven und Muskeln veranlassten Alessandro Volta zu seinen Untersuchungen über den Galvanismus, die 1799 zur Erfindung der ersten Batterie führten – Volta’sche Säule genannt. Volta nutzte diese auch dazu, die Auswirkung von Gleichspannung auf Lebewesen zu untersuchen.[8]

1952 legten Alan Lloyd Hodgkin und Andrew Fielding Huxley ein mathematisches Modell[9] vor, das die Entstehung des Aktionspotentials im Riesenaxon des Tintenfisches durch das Wechselspiel verschiedener Ionenkanäle erklärt und unter dem Namen Hodgkin-Huxley-Modell berühmt wurde. Für diese Entdeckung erhielten die beiden Forscher zusammen mit John Eccles 1963 den Nobelpreis für Medizin.

Grundlagen

Ein Aktionspotential verläuft in einer für die Zellart typischen Form. Es dauert bei Nervenzellen oft nur etwa ein bis zwei Millisekunden, bei Skelettmuskelzellen kaum länger, bei Herzmuskelzellen meist über 200 ms. Reizabhängig stärkere oder schwächere Aktionspotentiale gibt es dabei nicht, vielmehr sind es Alles-oder-Nichts-Antworten. Die Signalstärke ergibt sich daher aus der Frequenz von Aktionspotentialen. Sie entstehen bei Nervenzellen typischerweise am Axonhügel und werden in Serien das Axon entlang fortgeleitet. Aktionspotentiale können sich auch rückwärts über den Zellkörper und die Dendriten ausbreiten; die Funktion dieser Weiterleitung wird noch untersucht. Die axonale Ausbreitung vom Zellkörper zum Endknöpfchen wird orthodrom genannt, die gegenläufige antidrom.[10]

Voraussetzung für die Ausbildung eines Aktionspotentials sind besondere Eigenschaften der Plasmamembran der Zelle. Die spezifische Ausstattung mit verschiedenen Gruppen von Ionenkanälen spiegelt sich in Kennzeichen der Verlaufsform wider. Zu einer Erregung kommt es, wenn sich das Membranpotential vom Ruhewert entfernt und in Richtung weniger negativer Werte verschiebt. Erreicht diese anfängliche Vordepolarisation eine bestimmte Schwelle, das sogenannte Schwellenpotential (etwa bei −55 mV), werden spannungsgesteuerte Ionenkanäle aktiviert, die sich in verketteter Abfolge öffnen, damit Ionenströme ermöglichen, und wieder inaktivieren.

Während dieser Kette von Öffnungs- und Schließungsvorgängen der Kanäle ändern sich also vorübergehend die Membranleitfähigkeiten für verschiedene Ionen. Die damit verbundenen kurzzeitig auftretenden Ionenströme führen gemeinsam zu einem charakteristischen Potentialverlauf. Dessen Form ist zellbezogen die gleiche, unabhängig von der Stärke des auslösenden überschwelligen Reizes. Die kurzzeitigen Änderungen des Potentials breiten sich nun (elektrotonisch) auf den benachbarten Membranbereich aus und können dann erregend auch hier wieder zum Aktionspotential führen, was die Grundlage der Erregungsleitung ist.

Potentialverlauf

Drei Potentialverläufe nach verschieden starken Reizen (jeweils bei der Pfeilmarke). Das Ruhepotential liegt bei −70 mV (gestrichelte Line). Zwei unterschwellige Reize erhöhen das Membranpotential auf maximal −65 bzw. −60 mV. In beiden Fällen kehrt das Membranpotential unspektakulär auf seinen Ausgangswert zurück. Nach dem stärksten Reiz entwickelt sich ab einem Schwellenpotential von ungefähr −55 mV die als Aktionspotential bezeichnete Eigendynamik.

Ausgehend vom Ruhemembranpotential, das bei Neuronen je nach Zelltyp zwischen −90 und −70 mV liegt, werden vier Phasen des Aktionspotentials unterschieden:

  1. In der Initiationsphase treibt ein Reiz die negative Spannung in Richtung null (Depolarisation). Dies kann langsam oder schnell geschehen und ist unterhalb des Schwellenpotentials umkehrbar. Solch ein Reiz kann ein sich räumlich näherndes Aktionspotential sein oder ein postsynaptischer Ionenstrom.[11]
  2. Falls das Schwellenpotential überschritten wird, beschleunigt sich die Depolarisation stark (Aufstrich). Das Membranpotential wird sogar positiv (Overshoot).
  3. Auf das Maximum bei +20 bis +30 mV folgt die Rückkehr in Richtung Ruhepotential (Repolarisation).
  4. In vielen Neuronen wird das Ruhepotential zunächst unterschritten, bis z. B. −90 mV, und schließlich von tieferen negativen Werten her wieder erreicht. Dies wird als Hyperpolarisation oder hyperpolarisierendes Nachpotential bezeichnet. Während der Hyperpolarisation kann noch kein weiteres Aktionspotential ausgelöst werden.

Der zeitliche Verlauf eines Aktionspotentials kann sich über einige hundert Millisekunden hinziehen, beispielsweise in Herzmuskelzellen. Bei Nervenzellen hingegen dauert ein Aktionspotential nur etwa 1–2 ms. Danach kann ein weiteres Aktionspotential ausgelöst werden, allerdings nicht prompt, sondern erst nach einer gewissen Zeitspanne. Die Zelle befindet sich schon während der Repolarisation in dieser sogenannten Refraktärphase, bis sie wieder unter gleichen Bedingungen ein Aktionspotential bilden kann.

Man unterscheidet hierbei die absolute Refraktärzeit (ca. 0,5 ms bei Neuronen), in der gar kein Aktionspotential auslösbar ist, von der relativen Refraktärzeit (ca. 3,5 ms bei Neuronen), in der wegen des erhöhten Schwellenpotentials dafür stärkere Reizstärken nötig sind bzw. nur ein deformierter Potentialverlauf auszulösen ist. Von den Refraktärzeiten hängt die Maximalfrequenz ab, mit der ein Neuron Aktionspotentiale bilden und in Serie als Signale weiterleiten kann.

Ursachen

Das Verständnis des Aktionspotentials setzt das Verständnis des Gleichgewichtspotentials für einzelne Ionen voraus, wie es im Artikel Membranpotential beschrieben ist. Diese Spannung hängt vom Konzentrationsverhältnis außen/innen ab und kann mit der Nernst-Gleichung berechnet werden. Sind nur Kaliumkanäle geöffnet, stellt sich das Nernst-Potential von Kalium (−90 mV) ein, sind nur Natriumkanäle geöffnet, das Nernst-Potential von Natrium (+60 mV).

Ist die Membran sowohl für Kalium als auch für Natrium durchlässig, stellt sich diejenige Spannung ein, bei der die Summe beider Ströme null ist. Das Membranpotential liegt dabei umso näher am Nernst-Potential eines Ions, je größer die Permeabilität der Membran für dieses Ion ist; quantitativ wird dies durch die Goldman-Gleichung beschrieben. Bei dem Ruhemembranpotential sind vornehmlich die Kaliumkanäle geöffnet, woraus sich die niedrige Spannung von etwa −70 mV erklärt. Während eines Aktionspotentials überwiegt dagegen kurzzeitig die Permeabilität für Natrium. Sämtliche Potentiale, die im Verlauf eines Aktionspotentials auftreten, ergeben sich aus den Permeabilitäten zum jeweiligen Zeitpunkt.

Die Ströme, die im Verlauf eines Aktionspotentials auftreten, sind so klein, dass sie die Konzentrationen auf beiden Seiten der Membran nicht wesentlich verändern. Damit die Konzentrationsverhältnisse aber langfristig konstant bleiben, ist die Arbeit der Natrium-Kalium-Pumpe nötig, die unter ATP-Verbrauch drei Natriumionen im Austausch gegen zwei Kaliumionen aus der Zelle schafft.

Eigenschaften der Ionenkanäle

Wie im Artikel über das Ruhemembranpotential beschrieben, verfügen Zellen über eine Reihe von Ionenkanälen. Für das tierische Aktionspotential sind vor allem bestimmte für Natrium- bzw. Kalium-Ionen spezifische Ionenkanäle verantwortlich. Diese Kanäle öffnen sich in Abhängigkeit vom Membranpotential, sie sind somit spannungsaktiviert. In Ruhe ist das Membranpotential negativ.

So ist beispielsweise ein spannungsabhängiger Natriumkanal (Nav-Kanal) (aufgrund seiner Eigenschaft auch als schneller Natriumkanal bezeichnet) beim Ruhemembranpotential geschlossen und aktivierbar. Bei Depolarisation über einen kanalspezifischen Wert erfolgt eine Konformationsänderung der Transmembranproteine. Der Kanal wird dadurch durchlässig für Ionen und geht in den Zustand offen über. Doch bleibt der Kanal trotz anhaltender Depolarisation nicht offen, sondern wird innerhalb weniger Millisekunden wieder geschlossen, unabhängig vom Membranpotential. Das geschieht meist durch einen im Zytoplasma liegenden Teil des Kanalproteins, die Inaktivierungsdomäne, die sich gleich einem „Stöpsel“ in den Kanal setzt und diesen verstopft. Diesen Zustand bezeichnet man als geschlossen und inaktiviert.

Der anschließende Übergang in den Zustand geschlossen und aktivierbar ist nur nach einer Hyperpolarisation (oder vollständiger Repolarisation bei Herzmuskelzellen) möglich. So bleibt der Kanal zunächst geschlossen, wird nach einer Repolarisation bzw. Hyperpolarisation aktivierbar und kann erst danach wieder durch eine Depolarisation geöffnet werden. Nach einer Öffnung bleibt der Kanal nur kurzzeitig offen, da er von selbst rasch in die geschlossene Form übergeht und inaktiviert wird. Ein Übergang von inaktiviert nach offen jedoch ist bei depolarisierter Membran nicht möglich.

Nicht alle Kanäle öffnen sich gleichzeitig bei demselben Wert des Membranpotentials. Vielmehr ist die Wahrscheinlichkeit eines Kanals, in einen bestimmten Zustand überzugehen, spannungsabhängig. Aus der rein statistischen Verteilung stellt sich ein Gleichgewicht so ein, dass eine größere Zahl von Kanälen in der Summe das oben geschilderte Modell erfüllt.

Auch ist der Zeitaufwand, von einem Zustand in den anderen überzugehen, kanalspezifisch. Im geschilderten Natriumkanal läuft die Konformationsänderung von geschlossen nach offen in weniger als einer Millisekunde ab, während ein Kaliumkanal dafür rund 10 ms benötigt.

Abgesehen von der Spannung gibt es noch eine Reihe weiterer, oft chemischer Faktoren zum Öffnen bzw. Schließen der Kanäle. Für das Aktionspotential sind davon nur noch zwei von gewisser Bedeutung (siehe unten). Zum einen sind die einwärtsgleichrichtenden Kaliumkanäle (Kir) zwar an sich nicht regelbar. Es gibt jedoch niedermolekulare, positiv geladene Stoffe wie das Spermin, die bei ausreichender Depolarisation die Kanalporen verstopfen können (Kanalblock, Porenblock). Ein weiterer Mechanismus betrifft Kaliumkanäle, die öffnen, wenn intrazellulär Calciumionen (normalerweise intrazellulär in sehr niedriger Konzentration) an sie binden.

Ablauf

Je unterschiedliche Ionenverteilung kennzeichnen ausgehend vom Ruhepotential (1) die Phasen der langsamen Vordepolarisierung oder Initiation (2) sowie der schnellen Depolarisierung von Aufstrich samt Overshoot (3), die Repolarisierungsphase (4), die Hyperpolarisierung (5) und die Zeit bis zur Wiederherstellung (6) der Ausgangslage im Verlauf einer Aktionspotentialserie

Ausgangslage

In der Ausgangslage befindet sich die Zelle in Ruhe und weist ihr Ruhemembranpotential auf. Die Natriumkanäle sind nahezu alle geschlossen, nur bestimmte Kaliumkanäle sind geöffnet. Die Kaliumionen bestimmen so im Wesentlichen das Ruhemembranpotential. Bei allen Ionenbewegungen werden Richtung und Stärke durch die elektrochemischen Triebkräfte für die jeweiligen Ionen bestimmt. Vor allem Natriumionen strömen infolge des herrschenden Konzentrationsgefälles schnell in die Zelle, sobald sich die Kanäle dafür öffnen.

Initiationsphase

Während der Initiationsphase wird das Membranpotential so verändert, dass es vom Ruhepotential abweicht in Richtung Null, bis die Verringerung des Ladungsgefälles ein gewisses Schwellenpotential erreicht. Diese Vor-Depolarisierung kann im Experiment durch eine Reizelektrode, am Axonhügel durch die Öffnung von postsynaptischen Ionenkanälen (Na+, Ca2+) oder an der Axonmembran durch ein elektrotonisch weitergeleitetes (Aktions)potential aus einer benachbarten Membranregion geschehen.

Bei derartigen vordepolarisierenden Veränderungen des Membranpotentials, beispielsweise von −70 auf −60 mV und darüber hinaus, können Kir-Kanäle durch Porenblocker wie Spermin versperrt werden. Damit wird ein in Richtung Ruhepotential gleichrichtend wirkender Kaliumstrom gedämpft. Dies erleichtert das Erreichen des Schwellenpotentials und beschleunigt die folgende Depolarisation bei Öffnung von Natriumkanälen.

Aufstrich und Overshoot

Bei ungefähr −55 mV fangen die spannungsabhängigen Natriumkanäle NaV an, in den offenen Zustand überzugehen. Natriumionen, die mit ihrer hohen Außenkonzentration weit von ihrem elektrochemischen Gleichgewicht entfernt sind, strömen ein, die Zelle depolarisiert. Dadurch werden weitere spannungsempfindliche Kanäle geöffnet, und noch mehr Ionen können einströmen: Der schnelle Aufstrich führt zum Overshoot (Umpolarisierung/Ladungsumkehr). Die „explosionsartige“ Depolarisierung nach Überschreiten des Schwellenpotentials kommt also durch eine positive Rückkopplung zustande.

Repolarisation

Noch bevor das Potentialmaximum im Overshoot erreicht ist, werden erste NaV-Kanäle inaktiv. Zugleich kommen nun die spannungsabhängigen Kaliumkanäle KV ins Spiel, K+-Ionen strömen aus der Zelle heraus. Diese Ionenkanäle haben zwar ihre Schwelle bei ähnlichen Werten, brauchen aber wesentlich länger für den Öffnungsvorgang. Während des Maximums der Na-Leitfähigkeit sind diese Kaliumkanäle erst zur Hälfte geöffnet; sie erreichen ihr Maximum, wenn fast alle Na-Kanäle schon inaktiviert sind. Daher liegt das Na-Leitfähigkeit-Maximum etwas vor dem Spannungsmaximum im Overshoot, das K-Leitfähigkeit-Maximum aber in der Phase der steilsten Repolarisation.

Während der Repolarisation nähert sich das Potential wieder dem Ruhepotential. Die KV-Kanäle schließen, und ein Porenblock der Kir wird aufgehoben, was für die Stabilisierung des Ruhepotentials wichtig ist. Die NaV-Kanäle werden langsam wieder aktivierbar. Die Repolarisation auf zum Beispiel −80 mV wird gelegentlich auch als Hyperpolarisation bezeichnet, wenn dieser Begriff als zunehmende Negativierung eines Membranpotentials definiert ist.

Nachhyperpolarisation

In vielen Zellen, vor allem Nervenzellen, ist noch eine über das Ruhepotential hinausgehende Hyperpolarisation zu beobachten. Sie erklärt sich aus einer weiterhin erhöhten Kaliumleitfähigkeit, wodurch das Potential noch näher am Kalium-Gleichgewichtspotential liegt. Die K-Leitfähigkeit ist erhöht, weil während des Aktionspotentials eingeströmte Calciumionen hier besondere Kaliumkanäle öffnen; sie normalisiert sich erst, wenn der intrazelluläre Calciumspiegel wieder absinkt. Bezeichnete man die Repolarisation bereits als Hyperpolarisation, wird dieser Vorgang einer zusätzlichen Absenkung dann Nachhyperpolarisation genannt.

Refraktärzeit

Nach dem Abklingen des Aktionspotentials ist eine Zelle für eine kurze Zeit nicht erregbar. Bei den Arbeitsmyokardzellen des Herzens ist diese Phase – hier auch „Plateauphase“ genannt – besonders lang anhaltend, was auf einen „langsamen Calcium-Einstrom“ zurückgeführt wird. Dieser Umstand ist bedeutend, denn so wird ein rückläufiger Wiedereintritt der Erregung verhindert (Unidirektionalität). Die Dauer dieser Zeitspanne, die Refraktärzeit, ist abhängig vom Zeitverlauf der Wiederaktivierung von NaV-Kanälen. Während der absoluten Refraktärphase kurz nach dem Overshoot, wenn die Repolarisation noch im Gange ist, können diese Kanäle überhaupt nicht wieder öffnen. Man sagt auch, der Schwellenwert liegt bei unendlich. Während der relativen Refraktärphase benötigt man stärkere Reize und erhält schwächere Aktionspotentiale. Hier bewegt sich der Schwellenwert von unendlich wieder auf seinen normalen Wert zu.

Schwellenpotential

Meist wird die Auslösung eines Aktionspotentials beschrieben als das Überschreiten eines bestimmten Schwellenpotentials, ab dem Natriumkanäle konzertiert geöffnet werden. Trotz aller Bemühungen eine solche exakte „Feuerschwelle“ zu finden, kann kein fixer Spannungswert angegeben werden als Bedingung für ein Aktionspotential. Stattdessen feuern Neurone auf einem relativen breiten Band auslösender Membranspannungen. Daher wird neurowissenschaftlich von der Vorstellung eines festen Wertes für das Schwellenpotential Abstand genommen. Systemtheoretisch lässt sich der Entstehungsprozess eines Aktionspotentials am ehesten durch eine Bifurkation wie beispielsweise beim Hodgkin-Huxley-Modell beschreiben. Dennoch ist es, auch in der Fachliteratur, durchaus üblich, weiterhin von einer Schwelle zu sprechen, um den „grauen Bereich zwischen Ruhe und Aktionspotential“ abgrenzend zu kennzeichnen.

Tierische Aktionspotentiale

Bei Purkinjezellen können Aktionspotentiale in ihrer Häufigkeit außer durch spannungsaktivierte Natriumkanäle auch durch spannungsaktivierte Calciumkanäle moduliert werden.[12][13]

Pflanzliche Aktionspotentiale

Prinzipiell sind Zellen von Pflanzen und Pilzen[5] auch elektrisch erregbar. Der Hauptunterschied zum tierischen Aktionspotential besteht darin, dass die Depolarisierung nicht durch Einstrom von (positiv geladenen) Natriumionen geschieht, sondern durch Ausstrom von (negativ geladenen) Chloridionen.[3][14][15] Zusammen mit dem darauffolgenden Austritt von (positiv geladenen) Kaliumionen – der gleichermaßen in tierischen wie in pflanzlichen Zellen die Repolarisierung bewirkt – bedeutet dies für Pflanzenzellen einen osmotischen Verlust an Kaliumchlorid; dagegen ist das tierische Aktionspotential durch gleiche Mengen von Natriumeinstrom und Kaliumausstrom in der Summe osmotisch neutral.

Die Kopplung von elektrischen und osmotischen Ereignissen beim pflanzlichen Aktionspotential[16] legt nahe, dass elektrische Erregbarkeit bei den gemeinsamen einzelligen Vorfahren von Tier- und Pflanzenzellen der Regulierung des Salzhaushalts unter veränderlichen Salinitätsbedingungen diente, während die osmotisch neutrale Fortleitung von Signalen durch tierische Vielzeller mit nahezu konstanter Salinität eine evolutionär jüngere Errungenschaft darstellt.[17] Demnach hat sich die Signalfunktion von Aktionspotentialen in einigen Gefäßpflanzen (beispielsweise Mimosa pudica) unabhängig von derjenigen in tierischen Zellen herausgebildet.

Literatur

  • Stefan Silbernagl, Agamemnon Despopoulos: Taschenatlas der Physiologie. 6. Auflage. Thieme Verlagsgruppe, Stuttgart 2003, ISBN 3-13-567706-0.

Weblinks

Einzelnachweise

  1. H. Machemer, A. Ogura: Ionic conductances of membranes in ciliated and deciliated Paramecium. In: The Journal of Physiology. Band 296, 1979, S. 49–60, PMID 529122.
  2. A. R. Taylor: A fast Na+/Ca2+-based action potential in a marine diatom. In: PLOS ONE. Band 4(3), 2009, Artikel e4966, PMID 19305505.
  3. 3,0 3,1 M. J. Beilby: Action potentials in charophytes. In: Int. Rev. Cytol. Band 257, 2007, S. 43–82, doi:10.1016/S0074-7696(07)57002-6, PMID 17280895.
  4. T. Sibaoka: Excitable cells in Mimosa. In: Science. Band 137, 1962, S. 226, PMID 13912476.
  5. 5,0 5,1 C. L. Slayman, W. S. Long, D. Gradmann: Action potentials in Neurospora crassa, a mycelial fungus. In: Biochimica et biophysica acta. Band 426, 1976, S. 737–744, PMID 130926.
  6. 6,0 6,1 L. A. Galvani: De viribus electricitatis in motu musculari. („Über Kräfte der Electricität bei Muskelbewegung“). Bologna 1791. (online)
  7. M. Piccolino: Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. In: Trends in Neuroscience. Band 20, Nr. 10, 1997, S. 443–448, doi:10.1016/S0166-2236(97)01101-6.
  8. M. Piccolino: The bicentennial of the Voltaic battery (1800–2000): the artificial electric organ. In: Trends in Neuroscience. Band 23, Nr. 4, 2000, S. 147–151, doi:10.1016/S0166-2236(99)01544-1.
  9. A. L. Hodgkin, A. F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve. In: J. Physiol. Band 117, 1952, S. 500–544, PMID 12991237.
  10. John P. J. Pinel, Paul Pauli: Biopsychologie. 6., aktualis. Auflage. Pearson Studium, 2007, ISBN 978-3-8273-7217-8, S. 110.
  11. Robert F. Schmidt: Physiologie des Menschen: Mit Pathophysiologie. Springer Verlag, 2007, ISBN 978-3-540-32908-4, S. 88.
  12. E. Hosy, C. Piochon, E. Teuling, L. Rinaldo, C. Hansel: SK2 channel expression and function in cerebellar Purkinje cells. In: The Journal of physiology. Band 589, Pt 14, Juli 2011, S. 3433–3440, ISSN 1469-7793. doi:10.1113/jphysiol.2011.205823. PMID 21521760. PMC 3167108 (freier Volltext).
  13. N. Zheng, I. M. Raman: Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. In: Cerebellum. Band 9, Nummer 1, März 2010, S. 56–66, ISSN 1473-4230. doi:10.1007/s12311-009-0140-6. PMID 19847585. PMC 2841711 (freier Volltext).
  14. H. Mummert, D. Gradmann: Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes. In: Journal of Membrane Biology. Band 124, 1991, S. 265–273, PMID 1664861.
  15. D. Gradmann: Models for oscillations in plants. In: Austr. J. Plant Physiol. Band 28, 2001, S. 577–590.
  16. D. Gradmann, J. Hoffstadt: Electrocoupling of ion transporters in plants: Interaction with internal ion concentrations. In: Journal of Membrane Biology. Band 166, 1998, S. 51–59, PMID 9784585.
  17. D. Gradmann, H. Mummert: Plant action potentials. In: R. M. Spanswick, W. J. Lucas, J. Dainty: Plant Membrane Transport: Current Conceptual Issues. Elsevier Biomedical Press, Amsterdam 1980, ISBN 0-444-80192-8, S. 333–344.