Metastabilität: Unterschied zwischen den Versionen

Metastabilität: Unterschied zwischen den Versionen

imported>Jordi
(Energiespeicherung)
 
imported>Aka
K (https, deutsch, Links normiert, Kleinkram)
 
Zeile 1: Zeile 1:
{{Dieser Artikel|beschäftigt sich mit der thermodynamischen Bedeutung. Für weitere Bedeutungen siehe [[Metastabilität (Begriffsklärung)]].}}
{{Dieser Artikel|beschäftigt sich mit der thermodynamischen Bedeutung. Für weitere Bedeutungen siehe [[Metastabilität (Begriffsklärung)]].}}
'''Metastabilität''' ist eine schwache Form der Stabilität. Ein metastabiler Zustand ist stabil gegen kleine Änderungen, aber instabil gegenüber größeren Änderungen.
'''Metastabilität''' ist eine schwache Form der Stabilität. Ein metastabiler Zustand ist stabil gegen kleine Änderungen, jedoch instabil gegenüber größeren Änderungen.
 
[[Bild:Meta-stability.svg|thumb|Ein metastabiles System: Zustand 1 ist gegenüber kleinen Störungen stabil und geht bei großen Störungen in Zustand 3 über. Zustand 2 ist labil.]]
[[Bild:Meta-stability.svg|mini|Ein metastabiles System: Zustand 1 ist gegenüber kleinen Störungen stabil und geht bei großen Störungen in Zustand 3 über. Zustand 2 ist labil.]]
[[Bild:Lability.svg|thumb|Ein labiles System verlässt seinen Ausgangszustand nach einer [[infinitesimal]]en Störung und kehrt nicht zurück.]]
[[Bild:Lability.svg|mini|Ein labiles System verlässt seinen Ausgangszustand nach einer [[infinitesimal]]en Störung und kehrt nicht zurück.]]
[[Bild:Campfire_4213.jpg|thumb|right|Viele natürliche Systeme sind metastabil, Verbrennungen laufen deshalb erst nach einer ausreichenden Aktivierung ab.]]
[[Bild:Campfire 4213.jpg|mini|Viele natürliche Systeme sind metastabil, Verbrennungen laufen deshalb erst nach einer ausreichenden Aktivierung ab.]]
 
Ein Beispiel dafür ist das System ''Holz und Luftsauerstoff'' bei Raumtemperatur: Aus thermodynamischer Sicht würde das spontane Verbrennen des darin chemisch gebundenen [[Kohlenstoff]]s mit dem Sauerstoff zu Kohlenstoffdioxid zu einem stabileren Zustand führen. Ohne eine Aktivierung, also eine ausreichend große Energiezufuhr wie das Entzünden des Holzes, wird dies aber nicht passieren.


Ein Beispiel dafür ist das System ''Holz und Luftsauerstoff'' bei Raumtemperatur: Aus thermodynamischer Sicht würde das spontane Verbrennen des darin chemisch gebundenen [[Kohlenstoff]]s mit dem Sauerstoff zu Kohlenstoffdioxid zu einem stabileren Zustand führen. Ohne eine Aktivierung, also eine ausreichend große Energiezufuhr wie das Entzünden des Holzes, wird dies aber nicht passieren.
Anschaulich dargestellt ist das im Bild rechts: Ein Ball liegt in einer kleinen Mulde an einem Berghang. Solange der Ball nur wenig in der Mulde ausgelenkt wird, [[Rollen|rollt]] er an ihre tiefste Stelle zurück. Diese stellt ein lokales Minimum dar. Wird er aber stärker ausgelenkt, kann er den Berghang hinunterrollen und das globale Minimum erreichen. Zuerst muss also eine gewisse Mindestenergie aufgebracht werden, bevor sich der Zustand des Systems ändert.
Anschaulich dargestellt ist das im Bild rechts: Ein Ball liegt in einer kleinen Mulde an einem Berghang. Solange der Ball nur wenig in der Mulde ausgelenkt wird, [[Rollen|rollt]] er an ihre tiefste Stelle zurück. Diese stellt ein lokales Minimum dar. Wird er aber stärker ausgelenkt, kann er den Berghang hinunterrollen und das globale Minimum erreichen. Zuerst muss also eine gewisse Mindestenergie aufgebracht werden, bevor sich der Zustand des Systems ändert.


Metastabile [[Phase (Materie)|Phasen]] haben eine höhere Energie (korrekter: [[Freie Enthalpie]] – unter definierten Bedingungen wie konstanter Druck und konstante Temperatur) als die stabile Phase. Auf Grund einer hohen [[Aktivierungsenergie]] wandeln sie sich nicht oder nur langsam in die stabile Phase um.<ref>C.H.P. Lupis: ''Chemical Thermodynamics of Materials'', Elsevier, Amsterdam, 1983, ISBN 0-444-00713-X.</ref> Dieses energetische Grundprinzip metastabiler Zustände kann auch als Methode zur [[Energiespeicher]]ung nutzbar gemacht werden,<ref>''[http://forschung-energiespeicher.info/batterie-im-netz/projektliste/projekt-einzelansicht/104/Zukunftskonzept_elektrochemischer_Energiespeicher/ Zukunftskonzept elektrochemischer Energiespeicher.]'' Webseite der Initiative ''Energiespeicher – Forschungsinitiative der Bundesregierung'', 2. Mai 2016, abgerufen am 1. November 2017.</ref> wie es prinzipiell beispielsweise auch in [[Speicherkraftwerk (Wasser)|Speicherkraftwerken]] geschieht.
Metastabile [[Phase (Materie)|Phasen]] haben eine höhere Energie (korrekter: [[Freie Enthalpie]] – unter definierten Bedingungen wie konstanter Druck und konstante Temperatur) als die stabile Phase. Auf Grund einer hohen [[Aktivierungsenergie]] wandeln sie sich nicht oder nur langsam in die stabile Phase um.<ref>C.H.P. Lupis: ''Chemical Thermodynamics of Materials'', Elsevier, Amsterdam, 1983, ISBN 0-444-00713-X.</ref> Dieses energetische Grundprinzip metastabiler Zustände kann auch als Methode zur [[Energiespeicher]]ung nutzbar gemacht werden,<ref>''[https://forschung-energiespeicher.info/batterie-im-netz/projektliste/projekt-einzelansicht/104/Zukunftskonzept_elektrochemischer_Energiespeicher/ Zukunftskonzept elektrochemischer Energiespeicher.]'' Webseite der Initiative ''Energiespeicher – Forschungsinitiative der Bundesregierung'', 2. Mai 2016, abgerufen am 1. November 2017.</ref> wie es prinzipiell beispielsweise auch in [[Speicherkraftwerk (Wasser)|Speicherkraftwerken]] geschieht.


Ein Beispiel für eine metastabile Phase ist der [[Diamant]], der sich bei Atmosphärendruck spontan in [[Graphit]] verwandeln sollte; die Geschwindigkeit dieses Vorgangs ist allerdings bei Zimmertemperatur verschwindend klein. Ein anderes Beispiel ist die [[Zinnpest]]: Die metallische Phase des [[Zinn]]s wird unterhalb von 13 °C metastabil und wandelt sich langsam in die bei diesen Temperaturen stabilere nichtmetallische Phase um.<ref>{{Holleman-Wiberg|Auflage=102.|Startseite=1005}}</ref> Weitere Beispiele sind [[Unterkühlung (Thermodynamik)|unterkühltes]] Wasser, [[Glas]] (der stabile Zustand wären die kristallinen Silikate) und [[Übersättigung|übersättigte]] Lösungen, die zum Beispiel in [[Latentwärmespeicher|Handwärmern]] Verwendung finden.
Ein Beispiel für eine metastabile Phase ist der [[Diamant]], der sich bei Atmosphärendruck spontan in [[Graphit]] verwandeln sollte; die Geschwindigkeit dieses Vorgangs ist allerdings bei Zimmertemperatur verschwindend klein. Ein anderes Beispiel ist die [[Zinnpest]]: Die metallische Phase des [[Zinn]]s wird unterhalb von 13 °C metastabil und wandelt sich langsam in die bei diesen Temperaturen stabilere nichtmetallische Phase um.<ref>{{Holleman-Wiberg|Auflage=102.|Startseite=1005}}</ref> Weitere Beispiele sind [[Unterkühlung (Thermodynamik)|unterkühltes]] Wasser, [[Glas]] (der stabilste Zustand wären die kristallinen Silikate) und [[Übersättigung|übersättigte]] Lösungen, die zum Beispiel in [[Latentwärmespeicher|Handwärmern]] Verwendung finden.


== Siehe auch ==
== Siehe auch ==

Aktuelle Version vom 13. Mai 2021, 15:16 Uhr

Metastabilität ist eine schwache Form der Stabilität. Ein metastabiler Zustand ist stabil gegen kleine Änderungen, jedoch instabil gegenüber größeren Änderungen.

Ein metastabiles System: Zustand 1 ist gegenüber kleinen Störungen stabil und geht bei großen Störungen in Zustand 3 über. Zustand 2 ist labil.
Ein labiles System verlässt seinen Ausgangszustand nach einer infinitesimalen Störung und kehrt nicht zurück.
Viele natürliche Systeme sind metastabil, Verbrennungen laufen deshalb erst nach einer ausreichenden Aktivierung ab.

Ein Beispiel dafür ist das System Holz und Luftsauerstoff bei Raumtemperatur: Aus thermodynamischer Sicht würde das spontane Verbrennen des darin chemisch gebundenen Kohlenstoffs mit dem Sauerstoff zu Kohlenstoffdioxid zu einem stabileren Zustand führen. Ohne eine Aktivierung, also eine ausreichend große Energiezufuhr wie das Entzünden des Holzes, wird dies aber nicht passieren.

Anschaulich dargestellt ist das im Bild rechts: Ein Ball liegt in einer kleinen Mulde an einem Berghang. Solange der Ball nur wenig in der Mulde ausgelenkt wird, rollt er an ihre tiefste Stelle zurück. Diese stellt ein lokales Minimum dar. Wird er aber stärker ausgelenkt, kann er den Berghang hinunterrollen und das globale Minimum erreichen. Zuerst muss also eine gewisse Mindestenergie aufgebracht werden, bevor sich der Zustand des Systems ändert.

Metastabile Phasen haben eine höhere Energie (korrekter: Freie Enthalpie – unter definierten Bedingungen wie konstanter Druck und konstante Temperatur) als die stabile Phase. Auf Grund einer hohen Aktivierungsenergie wandeln sie sich nicht oder nur langsam in die stabile Phase um.[1] Dieses energetische Grundprinzip metastabiler Zustände kann auch als Methode zur Energiespeicherung nutzbar gemacht werden,[2] wie es prinzipiell beispielsweise auch in Speicherkraftwerken geschieht.

Ein Beispiel für eine metastabile Phase ist der Diamant, der sich bei Atmosphärendruck spontan in Graphit verwandeln sollte; die Geschwindigkeit dieses Vorgangs ist allerdings bei Zimmertemperatur verschwindend klein. Ein anderes Beispiel ist die Zinnpest: Die metallische Phase des Zinns wird unterhalb von 13 °C metastabil und wandelt sich langsam in die bei diesen Temperaturen stabilere nichtmetallische Phase um.[3] Weitere Beispiele sind unterkühltes Wasser, Glas (der stabilste Zustand wären die kristallinen Silikate) und übersättigte Lösungen, die zum Beispiel in Handwärmern Verwendung finden.

Siehe auch

  • Bistabilität

Einzelnachweise

  1. C.H.P. Lupis: Chemical Thermodynamics of Materials, Elsevier, Amsterdam, 1983, ISBN 0-444-00713-X.
  2. Zukunftskonzept elektrochemischer Energiespeicher. Webseite der Initiative Energiespeicher – Forschungsinitiative der Bundesregierung, 2. Mai 2016, abgerufen am 1. November 2017.
  3. A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 1005.