Der dimensionslose Tisserandparameter $ T $ (nach François Félix Tisserand) stellt eine Näherung des Jacobi-Integrals dar und ist näherungsweise eine Erhaltungsgröße des zirkular vereinfachten Dreikörperproblems. Er findet Anwendung in Astronomie und Raumfahrt.
Der Tisserandparameter eines kleinen Körpers (i. d. R. ein Asteroid oder Komet) in Bezug auf einen Planeten P wird definiert durch
mit
Der Tisserandparameter wird meist in Relation zum Jupiter angegeben ($ T_{J} $), da die Wechselwirkung mit Jupiter den größten Einfluss auf die Bahnen der kleineren Körper des Sonnensystems ausübt. Für Objekte jenseits der Jupiterbahn wird der Tisserandparameter jedoch auch in Bezug auf Saturn, Uranus und Neptun berechnet.
Die Voraussetzung, das „zirkular vereinfachte Dreikörperproblem“, bedeutet im Einzelnen:
Während die erste Annahme in der praktischen Anwendung durchaus gerechtfertigt ist, stellen die beiden anderen starke Idealisierungen dar.
Durch die Wechselwirkung mit Jupiter ändern sich die Bahnelemente eines Kometen zum Teil sehr stark, so dass mitunter erst nach umfangreichen iterativen Bahnberechnungen entschieden werden kann, ob es sich bei zwei Kometenbeobachtungen um den gleichen oder um zwei verschiedene Kometen handelt.
Der französische Astronom François Félix Tisserand veröffentlichte 1896 ein einfaches Kriterium, um die Bahnen von Kometen miteinander zu vergleichen: durch das Tisserandkriterium – die Tisserandparameter für beide Beobachtungen müssen annähernd übereinstimmen: $ T_{J_{1}}\approx T_{J_{2}} $– kann man entscheiden, ob es sich überhaupt um den gleichen Kometen handeln könnte, und kann deshalb in vielen Fällen auf die aufwändigen (händischen) Berechnungen verzichten.
In der zweiten Hälfte des 20. Jahrhunderts hat das Tisserandkriterium durch den Einsatz leistungsstarker Rechner stark an Bedeutung verloren.
Die heutige Bedeutung des Tisserandparameters liegt vor allem in einer einfachen Klassifikation der Körper des Sonnensystems:
Von dieser „Regel“ gibt es Ausnahmen, da es aufgrund fehlender Aktivität der Kometen in den äußeren Bereichen des Sonnensystems nicht einfach ist, sie von Asteroiden zu unterscheiden. So wurde bei einigen ursprünglich als Asteroiden eingestuften Objekten später eine Koma festgestellt, woraufhin sie auch als Kometen einzustufen sind (z. B. (2060) Chiron) – andere Asteroiden (Damocloiden) bewegen sich auf typischen Kometenbahnen, zeigen jedoch keinerlei Aktivität.
Bei der Planung eines Gravity-Assist-Manövers spielt die Erhaltung des Tisserandparameters eine entscheidende Rolle. Da die möglichen Bahnen nach dem Flyby durch den Tisserandparameter sehr stark eingeschränkt sind, nimmt man ihn als Basis für die Wahl einer passenden Zielbahn. Hat man diese gefunden, führt dies wiederum direkt zur benötigten Geschwindigkeit und zum Abstand für das Flyby-Manöver.
en:Tisserand's Criterion sl:Tisserandov kriterij