Als Aktivierung bezeichnet man in der Physik die Umwandlung stabiler in instabile, radioaktive Stoffe (Radionuklide) durch Bestrahlung. Aktivierung ist immer eine Folge von Kernreaktionen. Grundsätzlich kann jeder Kernreaktionstyp radioaktive Produkte hinterlassen.
Praktisch wichtig ist vor allem die Neutronenaktivierung. Hierunter wird im Allgemeinen der Einfang eines thermischen Neutrons verstanden, denn die meisten Nuklide haben hierfür große Wirkungsquerschnitte. Die Neutronenaktivierung in einem Forschungsreaktor oder mittels einer Neutronenquelle ist eine wichtige, hochempfindliche Nachweismethode für Spurenelemente. Sie dient auch zur Herstellung von Radionukliden für z. B. medizinische Zwecke.
In vielen Fällen, beispielsweise bei den Strukturmaterialien von Kernreaktoren, ist die Aktivierung durch Neutroneneinfang ein unerwünschter Effekt. Auch ist es möglich, dass bei großen Teilchenbeschleunigern durch Aktivierung radioaktive Stoffe im Boden erzeugt werden, die unter bestimmten Voraussetzungen dann mit dem Grundwasser transportiert werden können[1].
Die Aktivierung mit schnellen Neutronen beruht auf Kernreaktionen der Typen (n,p) oder (n,alpha), bei sehr hoher Neutronenenergie (ab etwa 10 MeV) auch (n,2n). Sie wird gelegentlich als Analysenmethode verwendet für Elemente, bei denen der thermische Neutroneneinfang kein gut messbares Radionuklid ergibt.
Als unerwünschte Wirkung auf das Material zukünftiger Fusionsreaktoren wird sie den größten Teil der Radioaktivität dieser Anlagen verursachen.
Gammastrahlung und Bremsstrahlung können durch Kernphotoeffekt aktivierend wirken. Dieser tritt je nach Element ab einer Gammaenergie von etwa 2 MeV ein; dabei wird ein Neutron oder ein Proton aus dem Kern herausgeschleudert, das dann seinerseits weitere Kernreaktionen auslöst. In wasserhaltigen Medien gilt dies vor allem für das Deuterium (Schweres Wasser), das immer natürlich enthalten ist; zudem dient das vorhandene Wasser als Moderator und bremst die Teilchen auf 'thermische' Energie ab, bei der dann die Folgereaktionen eintreten. Allerdings wird in industriellen Bestrahlungsanlagen als Isotopen-Strahlenquelle 60Co eingesetzt, das beim Zerfall jeweils zwei Gamma-Quanten mit einer mittleren Energie von 1,25 MeV aussendet. Diese Energie ist nicht ausreichend, um typischerweise in Lebensmitteln vorhandene Elemente zu aktivieren; allerdings gibt es einige wenige Isotope, die kaum in Lebensmitteln vorkommen (z. B. Indium), mit niedriger Schwellenenergie aber auch sehr geringem Wirkungsquerschnitt (Aktivierungswahrscheinlichkeit), sodass diese theoretische Aktivierung in der Praxis kaum messbar ist.
Wenn energiereiche Teilchenstrahlung (z. B. Elektronen) in schwerem Material Bremsstrahlung auslöst, kann auch diese den Kernphotoeffekt bewirken. Daher ist etwa bei der Lebensmittelbestrahlung auch mit Elektronenstrahl die Höchstenergie gesetzlich vorgeschrieben (vgl. Codex Alimentarius).
Geladene Teilchenstrahlen wie Alpha- und Betastrahlung (aus dem radioaktiven Zerfall) sowie beschleunigte Elektronen geben in Materie ihre Energie stückweise in aufeinander folgenden Stößen an die Elektronen der Atomhülle ab und erreichen nur in einem Bruchteil der Fälle überhaupt einen Atomkern. Allerdings gibt es bei genügend hoher Teilchenenergie einen indirekten Effekt: die Teilchen können bei Abbremsung Bremsstrahlung erzeugen, die u. U. durch Kernphotoeffekt Aktivierung bewirken kann.
Die Aktivierungswirkung von Teilchenstrahlung ist allgemein unbedeutend im Vergleich zu den direkten Schadwirkungen, die durch die an das Material oder Gewebe übertragene Stoßenergie zustande kommen. Die absorbierte Energie wird zu einem kleinen Teil direkt in Wärme umgewandelt, zum größten Teil allerdings durch Ionisation verbraucht; daher der Name 'ionisierende Strahlung'. Mit den Ionen als besonders chemisch reaktiven Komponenten (Atomen oder Molekülen) erfolgen dann chemische Reaktionen, die unerwünschte oder erwünschte Wirkungen haben können.
Die Kernspaltung führt ebenfalls zu radioaktiven Produkten, wird jedoch üblicherweise nicht als Aktivierung bezeichnet.