Die Wurfparabel ist die Flugbahn, die ein Körper beim Wurf in einem homogenen Schwerefeld beschreibt, wenn man den Einfluss des Luftwiderstands vernachlässigt.[1] Der schiefe Wurf stellt dabei den Regelfall dar – senkrechter und waagerechter Wurf sind Ausnahmefälle. Der Scheitel der Parabel befindet sich dabei am höchsten Punkt der Flugbahn, die Parabel ist nach unten geöffnet.
Auf der Erde ist das Schwerefeld nur bei kleinen Wurfweiten annähernd homogen. Dann ist die Parabelform eine gute Näherung. Streng genommen folgt der Körper aber einer ellipsenförmigen Kepler-Bahn.
Die ballistische Kurve ist die von der idealen Wurfparabel abweichende Kurve unter Einfluss des Luftwiderstandes.[2] Die Wurfparabel ist die Idealisierung der ballistischen Flugbahn.
Grund für die Parabelform ist die Tatsache, dass während des Fluges nur die Schwerkraft auf den Körper einwirkt. Es liegt ein freier Fall vor. Zur Berechnung wird die Anfangsgeschwindigkeit in die zueinander senkrechten Komponenten
Der Körper wird mit einer Geschwindigkeit
Daraus ergibt sich für die
und
Die vektorielle Bahngleichung lautet dann:
Die explizite Bahngleichung im Ortsraum (indem man
(Bedeutung der weiteren Variablen:
Die Reichweite
Da die Sinusfunktion bei
Die Formel mit dem Arkuskosinus ergibt sich aus der Darstellung für den Arkussinus, und für die letzte Darstellung werden die Argumente der beiden vorhergehenden Formeln durch einander geteilt. Die Anfangshöhe darf höchstens so tief unter dem Ziel liegen, dass dieses bei einem senkrechten Wurf mit der Wurfweite
Die von der Abwurfhöhe
Aus der Formel für die maximale Wurfweite ergeben sich durch Umstellen der Gleichung die minimale Abwurfgeschwindigkeit für vorgegebene Abwurfhöhe und Wurfweite zu
Für
Soll durch einen Wurf ein Ziel auf gleicher Höhe in einer gegebenen Entfernung
erfüllen. Dabei ist stets genau eine Lösung größer als 45°, die andere kleiner als 45°. Entsprechend werden in der Ballistik Lösungen mit einem Winkel über 45° als obere Winkelgruppe bezeichnet, die anderen als untere Winkelgruppe. Im Artilleriewesen spricht man von Steilfeuer beziehungsweise flachem Feuer.
Für einen Wurf (oder Schuss) zu einem 100 m entfernten Ziel auf gleicher Höhe muss die Anfangsgeschwindigkeit unter den üblichen idealen Annahmen (keine Reibung, Schwerebeschleunigung von 9,81 m/s2) mindestens 31 m/s betragen, um das Ziel zu erreichen. Mit diesem Wert für die Anfangsgeschwindigkeit ist es durch einen Wurf von 45° erreichbar und nur dadurch. Für jeden höheren Geschwindigkeitswert gibt es dann stets zwei Lösungen. Beispielsweise kann bei einer Anfangsgeschwindigkeit von 40 m/s das Ziel sowohl mit einem Winkel von 18,9° wie auch mit dem von 71,1° erreicht werden; die Flugdauer ist für Lösungen aus der unteren Winkelgruppe jeweils kürzer, im Beispiel beträgt sie etwa 2,6 s gegenüber 7,7 s für die zweite Lösung.
Für
für die Wurfweite
Der Scheitelpunkt wird erreicht, wenn die vertikale Geschwindigkeitskomponente ihren Nulldurchgang hat, d. h., wenn sich eine zuerst nach oben gerichtete Bewegung in eine nach unten gerichtete Bewegung umkehrt. Wenn der Wurf nach oben gerichtet war, dann ist die Schwerebeschleunigung entgegengesetzt zur vertikalen Bewegungsrichtung des Körpers und wirkt dann nicht beschleunigend, sondern verzögernd, bis sie ihn auf null abgebremst hat und anschließend nach unten weiter beschleunigt. Im Scheitelpunkt wurde also die gesamte kinetische Energie (in vertikaler Richtung) umgesetzt in potentielle Energie.
Den Scheitelpunkt kann man berechnen, da der Wurf eine Parabelform hat, und der Scheitelpunkt somit zwischen den Nullstellen 0 und
Aufgelöst, hat der Scheitelpunkt folgende Koordinaten:
Wären weder Gravitation noch Luftwiderstand vorhanden, so würde der Körper dem Trägheitsprinzip folgend gleichförmig bewegt in die gleiche Richtung und mit gleicher Geschwindigkeit wie zu Anfang weiterfliegen (roter Pfeil).
Das Erdschwerefeld lenkt den Körper jedoch nach unten ab – und zwar mit der Zeit
Der senkrechte Wurf ist ein wichtiger Spezialfall der Wurfparabel. Er lässt sich in zwei verschiedene Wurfrichtungen ausführen – nach oben (gegen die Schwerebeschleunigung) und nach unten (mit der Schwerebeschleunigung).
Der senkrechte Wurf nach oben entspricht einer ungestörten Überlagerung von geradlinig gleichförmiger Bewegung nach oben und dem freien Fall nach unten. Wenn man dies in einer Grafik darstellt, so ergibt sich eine symmetrische Parabel, deren höchster Punkt dem Umkehrpunkt (Scheitelpunkt) des Körpers entspricht. Dabei ergeben sich folgende Formeln:
wird berechnet, indem man die Geschwindigkeit
berechnet und schließlich mithilfe der unteren Gleichung
Es ergibt sich:
Der senkrechte Wurf nach unten entspricht einer Überlagerung von geradliniger Bewegung nach unten und freiem Fall nach unten. Dabei ergeben sich folgende Formeln:
Einen weiteren Spezialfall, für den sich die Gleichungen vereinfachen, bildet der waagerechte Wurf.
Wird bei gegebener Anfangsgeschwindigkeit
Die Gleichung der Hüllkurve der Wurfparabeln
Sie entspricht demnach einem waagerechten Wurf (
Auch für Würfe an geneigten Ebenen kann man den Winkel für die maximale Reichweite bestimmen.
Der Luftwiderstand bremst proportional zu
Bei Raketen mit kurzer Brennzeit (Kurzstrecken-, Luftabwehrraketen) ist die Form der Flugbahn ähnlich wie beim schrägen Wurf eines schnittigen Körpers. Die Reichweite wird dann von Anfangsgeschwindigkeit und Scheitelhöhe bestimmt, die ihrerseits vom Abschusswinkel abhängt.
Der Parabelflug ist ein Flugmanöver, meist ausgeführt in großer Höhe, bei dem ein Flugzeug eine etwa halbminütige Wurfparabel beschreibt. Er dient zum Training der Schwerelosigkeit für Astronauten und für Experimente bei verminderter Schwerkraft, sogenannter Mikrogravitation.
en:Trajectory of a projectile it:Traiettoria parabolica pt:Trajetória parabólica