Wärmehysterese

Wärmehysterese

Version vom 9. Februar 2017, 09:00 Uhr von imported>Nothingserious (Defekten Weblink entfernt)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wegabhängigkeit der Ursache und Wirkung (Hysterese)

Unter Wärmehysterese oder thermische Hysterese (TH) wird der Unterschied (Hysterese) zwischen den Schmelz- und Erstarrungspunkten einer Lösung verstanden.

Eigenschaften

Die Wärmehysterese kann in der Veränderung einer temperaturabhängigen Eigenschaft mancher Lösungen beobachtet werden: Ändert sich diese bei Erwärmung und Abkühlung um den gleichen Faktor aber in unterschiedlichem Maße, spricht man von Wärmehysterese.[1] Während die Trennung der Schmelz- und Gefriertemperatur als thermische Hysterese bezeichnet wird, wird die Temperatur bei der es zu Eisformation kommt, in diesem Zusammenhang als Hysterese-Gefrierpunkt bezeichnet.[2]

Wärmehysterese in biologischen Systemen

Das für Wärmehysterese verantwortliche Anti-Frost-Protein aus Choristoneura fumiferana[3]

Wärmehysterese deutet auf das Vorhandensein von biologischen Gefrierschutzmitteln (beispielsweise Frostschutzproteinen, synonym thermale Hystereseproteine) in Lebewesen hin und wurde in Tieren, Pflanzen, Bakterien und Pilzen beschrieben.[4][5][6][7] Diese Proteine erzeugen eine Gefrierpunktserniedrigung und verringern die Bildung von Eiskristallen, indem sie in nicht-kolligativer Weise an die Oberfläche der entstehenden Eiskristalle binden.[2][4] Das Verhalten einer Reihe von synthetischen Nukleinsäuren in Wasser-Methanol-Mischungen bei tieferen Temperaturen ist ebenfalls verzögert im Sinne einer Wärmehysterese.[8]

Literatur

  • Stefan Kasapis, Ian T. Norton, Johan B. Ubbink: Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Application. Academic Press, 2009. ISBN 978-0-08-092114-3, S. 98 ff.

Einzelnachweise

  1. : Thermal Hysteresis. In: The free dictionary. Abgerufen am 18. November 2014.
  2. 2,0 2,1 E. Kristiansen, K. E. Zachariassen: The mechanism by which fish antifreeze proteins cause thermal hysteresis. In: Cryobiology. Band 51, Nummer 3, Dezember 2005, ISSN 0011-2240, S. 262–280, doi:10.1016/j.cryobiol.2005.07.007, PMID 16140290.
  3. S. P. Graether, M. J. Kuiper, S. M. Gagné, V. K. Walker, Z. Jia, B. D. Sykes, P. L. Davies: Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. In: Nature. Band 406, Nummer 6793, Juli 2000, ISSN 0028-0836, S. 325–328, doi:10.1038/35018610, PMID 10917537.
  4. 4,0 4,1 H. Kondo, Y. Hanada, H. Sugimoto, T. Hoshino, C. P. Garnham, P. L. Davies, S. Tsuda: Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. In: Proceedings of the National Academy of Sciences of the United States of America. Band 109, Nummer 24, Juni 2012, ISSN 1091-6490, S. 9360–9365, doi:10.1073/pnas.1121607109, PMID 22645341, PMC 3386094 (freier Volltext).
  5. M. M. Harding, P. I. Anderberg, A. D. Haymet: ‚Antifreeze‘ glycoproteins from polar fish. In: European journal of biochemistry / FEBS. Band 270, Nummer 7, April 2003, ISSN 0014-2956, S. 1381–1392, PMID 12653993.
  6. S. R. Inglis, J. J. Turner, M. M. Harding: Applications of type I antifreeze proteins: studies with model membranes & cryoprotectant properties. In: Current protein & peptide science. Band 7, Nummer 6, Dezember 2006, ISSN 1389-2037, S. 509–522, PMID 17168784.
  7. J. Barrett: Thermal hysteresis proteins. In: The international journal of biochemistry & cell biology. Band 33, Nummer 2, Februar 2001, ISSN 1357-2725, S. 105–117, PMID 11240367.
  8. Eberhard Neumann: Molekulare Hysterese und ihre kybernetische Bedeutung. In: Angewandte Chemie. 85, 1973, S. 430–444, doi:10.1002/ange.19730851003. (PDF).