Hexapod

Hexapod

Version vom 3. August 2017, 01:57 Uhr von imported>Schnabeltassentier (satzbau)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Eine typische Konfiguration eines Hexapods als Plattform

Ein Hexapod (Hexa griech.: Sechs, pod griech.: Fuß) ist eine räumliche Bewegungs-Maschine mit sechs Antriebselementen.

Ausgestaltung

Ein Hexapod ist eine spezielle Form einer Parallelkinematikmaschine, die über sechs Beine veränderlicher Länge verfügt. Die typische Konstruktion des Hexapods ermöglicht eine Beweglichkeit in allen sechs Freiheitsgraden (drei translatorische sowie drei rotatorische). Durch die parallele Anordnung der Antriebe besitzen Hexapode verglichen mit seriellen Robotern ein besseres Verhältnis von Nutzlast zu Eigengewicht.

Geschichte

Bis vor wenigen Jahren herrschte die Meinung, das Konzept des Hexapods sei zuerst von D. Stewart im Jahr 1965 vorgestellt worden. Daher rührt auch die verbreitete Bezeichnung Stewart-Plattform. Eine andere Veröffentlichung zum Thema ist jedoch wesentlich älter und stammt von Eric Gough, weshalb der Hexapod inzwischen auch als Stewart/Gough-Plattform bezeichnet wird. Eric Gough soll den ersten Hexapoden bereits in den 1950er Jahren gebaut haben. Ein weiterer Name im Zusammenhang mit der Entwicklung des Hexapoden ist Klaus Cappel, der im Jahr 1962 seinen ersten Hexapoden baute.[1]

Einsatz

In verschiedenen Konfigurationen kommen Hexapode regelmäßig für besondere Zwecke zum Einsatz:

  • Aktuatorischer Antrieb von Fahr- und Flugsimulatoren
  • Montierung von Teleskopen, siehe Hexapod-Teleskop
  • in der Robotik
  • in der Medizintechnik, siehe Taylor Spatial Frame
  • Als Grundelement in Werkzeugmaschinen (siehe Abschnitt Parallelkinematik), besonders beim Zerspanen komplexer Geometrien und Freiformflächen

Besonders bei Bewegungssimulationen ist die hohe Dynamik und die einfache Statik von Hexapoden eine ideale Konstruktion.

Anwendungsforschung

Wegen der besonderen Kinematik (Parallelkinematik) ist das Konstruktionsprinzip von Hexapoden grundsätzlich sehr interessant für den Einsatz bei Robotern, bzw. speziellen Industrierobotern und Werkzeugmaschinen. Solche Systeme gibt es von vielen Herstellern und in der Grundlagenforschung seit über 20 Jahren. Bis heute findet aber kein nennenswerter Einsatz in der Produktion statt, die traditionell von Maschinen mit serieller Kinematik dominiert wird. Als spezielle Vor- und Nachteile sind abzuwägen:

Vor- und Nachteile des Hexapod als Roboter, Plattform oder Werkzeugmaschine
Vorteile:
Hohe Dynamik und geringe bewegte Massen. Daraus folgen hohe Beschleunigungen und Endgeschwindigkeiten (Eilgang) und eine entsprechend schnellere Werkstückbearbeitung bzw. -Manipulation.
Positioniergenauigkeit ist bei einer Parallelkinematik grundsätzlich besser, da sich Positionsfehler der Achsen nicht – wie bei einer seriellen Kinematik – aufsummieren, sondern nur anteilig in die Gesamtbewegung eingehen.
Hohe Beweglichkeit. Der Freiheitsgrad des Werkzeugs bzw. der Werkzeugaufnahme erreicht fast kugelförmig 5-Seiten. Allerdings erreichen traditionelle Maschinen mit serieller Kinematik heute, bei gleichzeitiger Verwendung von schwenkbaren Werkzeugköpfen und drehbaren Spanntischen, einen vergleichbar hohen Freiheitsgrad.
Nachteile:
Durch die räumliche Aufspannung der Hexapodenkonstruktion ergibt ein Einsatz bei Robotern, im Vergleich zur häufigsten Bauform als vielgelenkiger, einzelner Arm (z. B. KUKA Roboter), eine sehr eingeschränkte Beweglichkeit zwischen und besonders auch in anderen Maschinen (z. B. Entnahme eines Schmiedewerkstücks aus einer Presse). Aus dem gleichen Grund benötigt eine Hexapodenkonstruktion bei Werkzeugmaschinen einen im Vergleich erheblich größere Aufstellfläche (Kostenfaktor).
Höherer Steuerungsaufwand (Software & Hardware) durch die komplexere Kinematik (6 immer gleichzeitig aktive Vorschubbaugruppen).
Die geringere Masse der Konstruktion bedingt eine wesentlich höhere Schwingungsanfälligkeit, die besonders bei spanender Bearbeitung generell sehr unerwünscht ist (Rauigkeit).
Konstruktionsbedingte Empfindlichkeit bzw. ein entsprechend hoher Verschleiß der meist sehr teuren Vorschubbaugruppen, da Hydraulikzylinder bzw. Kugelrollspindeln nicht für alle bei Hexapoden konstruktionsbedingt auf sie wirkenden Kräfte geeignet sind.
Höhere thermische Belastung der Messsysteme, die bei einer Konstruktion mit serieller Kinematik üblicherweise geschützt, außerhalb des Arbeitsraums, in oder hinter den Führungen verborgen sind. Bei Hexapoden wäre eine entsprechende schützende Konstruktion zu aufwendig bzw. sie würde die Vorteile der Hexapoden-Konstruktion (Hohe Dynamik, Hohe Beweglichkeit) aufheben.

Siehe auch

Literatur

  • V. E. Gough, S. G. Whitehall: Universal Tyre Test Machine. In: G. Eley (Hrsg.): Ninth international automobile technical congress, 1962. Proceeding. International Federation of Automobile Engineers’ and Technicians’ Associations. Institution of Mechanical Engineers, London 1962, S. 117–137, iri.upc.edu (PDF; 3,3 MB)
  • Jean-Pierre Merlet: Parallel Robots. Kluwer Academic Publishers, Boston MA 2000, ISBN 0-7923-6308-6 (Solid Mechanics and its Applications 74).
  • D. Stewart: A Platform with Six Degrees of Freedom. In: Proceedings of the Institution of Mechanical Engineers. Vol 180, Pt 1, No 15 1965/66, S. 371–386, iri.upc.edu (PDF; 5 MB)
  • Reimund Neugebauer: Parallelkinematische Maschinen: Entwurf, Konstruktion, Anwendung. Springer, Berlin 2005, ISBN 978-3-540-20991-1.

Weblinks

Einzelnachweise

  1. Ilian Bonev: The True Origins of Parallel Robots. 24. Januar 2003