Miklos Gyulassy

Miklos Gyulassy

Version vom 1. November 2017, 19:59 Uhr von imported>Kresspahl (→‎Einzelnachweise)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Miklos Gyulassy (* 9. März 1949 in Szolnok)[1] ist ein ungarisch-US-amerikanischer Kernphysiker. Er ist für Beiträge zur relativistischen Schwerionenphysik (Quark-Gluon-Plasma, heiße Kernmaterie und ihre Phasen) bekannt.

Leben

Gyulassy studierte an der University of California, Berkeley mit dem Bachelor-Abschluss 1970 und der Promotion in Physik 1974 bei Eyvind Wichmann. Als Post-Doktorand war er bis 1976 bei der Gesellschaft für Schwerionenforschung in Darmstadt und bei Walter Greiner in Frankfurt und ab 1976 am Lawrence Berkeley National Laboratory, ab 1981 als Senior Staff Scientist. Ab 1993 war er Professor an der Columbia University.

Werk

Als Post-Doktorand bei Greiner befasste er sich mit Vakuumpolarisation in starken Coulombfeldern, was auch ein Thema seiner Dissertation war (Korrektur der Energieniveaus in muonischen Atomen aufgrund Vakuumpolarisation in starken Feldern[2]). Am LBNL erforschte er Pion-Interferometrie (Anwendung optischer Intensitätsinterferometrie auf Pionen)[3][4], Charmonium-Zerfall, QCD-Transporttheorie, Stop von Baryonen in Kernmaterie und kollektive hydrodynamische Flüsse der QCD-Materie in Schwerionenstößen.

2003 kündigte er die Entdeckung von Quark-Gluon-Plasma am Relativistic Heavy Ion Collider (RHIC) in Brookhaven an. 2004 schlug er mit Larry McLerran[5] eine Interpretation der ersten drei Jahre der Datensammlung bei Schwerionenstößen am RHIC vor mit Hinweisen auf die Entdeckung zweier neuer Phasen von QCD-Materie: stark wechselwirkendes Quark-Gluon-Plasma (sQGP) und Farb-Glas-Kondensat ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), CGC). Insbesondere das beobachtete kollektive Flussverhalten der QCD-Materie nach dem Stoß entsprechend einer fast idealen Flüssigkeit und elliptischer Fluss war ein Hinweis auf die Bildung eines Quark-Gluon-Plasmas in den RHIC-Experimenten.

1991 entwickelte er mit Xin-Nian Wang das HIJING-Modell ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value))[6][7][8], ein Monte-Carlo-Simulator zur Vorhersage exklusiver Prozesse in hochenergetischen Proton-Proton, Proton-Kern und Kern-Kern-Stößen, und sagte starke nukleare Korrelationen in Jets mit hohen transversalen Impulsen voraus, die 2001 am RHIC beobachtet wurden.

Mit Peter Levai und Ivan Vitev entwickelte er das GLV-Modell[9][10], weiterentwickelt zu DGLV mit Magdalena Djordjevic[11], für die Beschreibung von Energieverlusten von Jets in QCD-Materie ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)). Die Art des Energieverlusts (im Quark-Gluon-Plasma vorwiegend induzierte Gluon-Emission statt Stösse) liefert Informationen über und gibt Hinweise auf das Quark-Gluon-Plasma, das zu einer starken Unterdrückung von Jets führt. Gyulassy entwickelt solche tomographischen auf störungstheoretischer QCD beruhenden Modelle von Energieverlusten von Jets in QCD-Materie mit Kollegen weiter (CUJET 2.0).[12] Hinweise auf Jet-Quenching fanden sich am RHIC. Mit noch höherer Energie als am RHIC werden die Vorhersagen auch ab 2010 bei ALICE am Large Hadron Collider (LHC) des CERN überprüft und dort wurde 2010 die erste direkte Beobachtung von Jet Quenching gemeldet.[13]

Seit 2007 arbeitet er auch an der Überprüfung von Vorhersagen von AdS-CFT-Korrespondenz für Schwerionenstöße.[14]

Auszeichnungen und Mitgliedschaften

Für 2015 erhielt er den Tom-W.-Bonner-Preis für Kernphysik[15]. 1987 erhielt er den Ernest-Orlando-Lawrence-Preis und 1986 den Humboldt-Forschungspreis. Er ist Fellow der American Physical Society und auswärtiges Mitglied der Ungarischen Akademie der Wissenschaften. 1983 bis 1996 war er im Planungskomitee für Kernphysik des Department of Energy (DOE).

Weblinks

Einzelnachweise

  1. Lebensdaten nach American Men and Women of Science. Thomson Gale 2004
  2. Damals glaubte man so eine Diskrepanz zwischen Theorie und Experiment zu erklären, was sich später als experimenteller Fehler erwies. Gyulassy fand in seiner Dissertation, das die Effekte zu klein waren, um die Diskrepanz zu erklären.
  3. M. Gyulassy, S. K. Kauffmann, Lance W. Wilson: Pion interferometry of nuclear collisions. I. Theory. In: Physical Review C. Band 20, Nr. 6, 1. Dezember 1979, S. 2267–2292, doi:10.1103/PhysRevC.20.2267.
  4. M. Gyulassy, S. K. Kauffmann: Coulomb effects in relativistic nuclear collisions. In: Nuclear Physics A. Band 362, Nr. 2, 8. Juni 1981, S. 503–533, doi:10.1016/0375-9474(81)90507-8.
  5. Miklos Gyulassy, Larry McLerran: New forms of QCD matter discovered at RHIC. In: Nuclear Physics A. Band 750, Nr. 1, 21. März 2005, S. 30–63, doi:10.1016/j.nuclphysa.2004.10.034, arxiv:nucl-th/0405013.
  6. Hjing Monte Carlo Model, von Wang
  7. Xin-Nian Wang, Miklos Gyulassy: HIJING: A Monte Carlo model for multiple jet production in pp, pA and AA collisions. In: Physical Review D. Band 44, Nr. 11, 1. Dezember 1991, S. 3501–3516, doi:10.1103/PhysRevD.44.3501.
  8. Xin-Nian Wang, Miklos Gyulassy: Gluon shadowing and jet quenching in A+A collisions at s =200A GeV. In: Physical Review Letters. Band 68, Nr. 10, 9. März 1992, S. 1480–1483, doi:10.1103/PhysRevLett.68.1480.
  9. M. Gyulassy, P. Lévai, I. Vitev: Jet quenching in thin quark–gluon plasmas I: formalism. In: Nuclear Physics B. Band 571, Nr. 1–2, 3. April 2000, S. 197–233, doi:10.1016/S0550-3213(99)00713-0.
  10. M. Gyulassy, P. Levai, I. Vitev: Non-Abelian Energy Loss at Finite Opacity. In: Physical Review Letters. Band 85, Nr. 26, 25. Dezember 2000, S. 5535–5538, doi:10.1103/PhysRevLett.85.5535.
  11. Magdalena Djordjevic, Miklos Gyulassy: Heavy quark radiative energy loss in QCD matter. In: Nuclear Physics A. Band 733, Nr. 3–4, 22. März 2004, S. 265–298, doi:10.1016/j.nuclphysa.2003.12.020.
  12. Jiechen Xu, Alessandro Buzzatti, Miklos Gyulassy: Azimuthal jet flavor tomography with CUJET2.0 of nuclear collisions at RHIC and LHC. In: Journal of High Energy Physics. Band 2014, Nr. 8, 1. August 2014, S. 1–90, doi:10.1007/JHEP08(2014)063, arxiv:1402.2956.
  13. LHC experiments bring new insight into primordial universe, CERN, 26. November 2010
  14. W. A. Horowitz, M. Gyulassy: Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss? In: Physics Letters B. Band 666, Nr. 4, 4. September 2008, S. 320–323, doi:10.1016/j.physletb.2008.04.065.
  15. Tom W. Bonnor Preis 2015 für Gyulassy