In der Mathematik ist das Poincaré–Bendixson-Theorem ein Satz über das Verhalten von Bahnkurven in zweidimensionalen stetigen dynamischen Systemen. Es ist benannt nach dem französischen Mathematiker Henri Poincaré, der ursprünglich eine schwächere Form des Satzes verfasste,[1] obwohl er keinen vollständigen Beweis kannte, und nach dem schwedischen Mathematiker Ivar Bendixson, der den vollständigen Satz 1901 bewies.[2]
Er macht Aussagen über die Existenz periodischer Orbits bzw. Grenzzyklen in ebenen dynamischen Systemen.
Das Theorem existiert in einigen äquivalenten Formulierungen. Eine allgemeine Version ist die folgende:[3]
Dabei heißt ein Orbit heteroklin, wenn er verschiedene Fixpunkte verbindet und homoklin, wenn er beim selben Fixpunkt beginnt und endet (dieser ist dann ein Sattelpunkt), das heißt er enthält sowohl eine stabile, als auch eine instabile Mannigfaltigkeit des Fixpunkts.
Eine andere Formulierung des Satzes lautet, dass ein Orbit, der für alle Zeiten in einer geschlossenen, begrenzten Teilmenge R der Ebene bleibt, die keine Fixpunkte enthält, ein periodischer Orbit sein muss oder ein Grenzzyklus (das heißt er nähert sich asymptotisch einem periodischen Orbit).[4] Das ist eine eingeschränktere Version als die obige Formulierung. Zum Beispiel folgt nicht, dass die Limesmengen (für $ t\to \infty $) Grenzzyklen oder Fixpunkte sind, sie können auch wie oben erwähnt Verbindungen aus homoklinen oder heteroklinen Orbits (Bahnen) und Fixpunkten sein. Der Satz schließt im Wesentlichen chaotisches Verhalten wie oben definierter dynamischer Systeme in der Ebene aus.[5]
Man beachte, dass der Satz in höheren Dimensionen falsch ist. Das liegt vor allem an der Anwendung des jordanschen Kurvensatzes im Beweis, der die Ebene in zwei Regionen teilt. Schon in drei Dimensionen kann ein Orbit in einem abgeschlossenen begrenzten Gebiet verlaufen, ohne auf einen Fixpunkt oder periodischen Orbit zu treffen. Dort gibt es zum Beispiel das chaotische Phänomen des Strange Attractors.
Der Satz von Poincaré-Bendixson gilt auch nicht für zweidimensionale Gebiete mit anderer Topologie als der Ebene, zum Beispiel den Torus. Hier kann man relativ einfach quasiperiodische Bewegungen konstruieren. Er gilt auch nicht für zweidimensionale Abbildungen, von denen zum Beispiel die Bäcker-Abbildung[6] stark chaotisches Verhalten zeigt oder für die Hénon-Abbildung, die einen Strange Attractor hat.