Laborexperimente könnten Rätsel um Mars-Mond Phobos lösen
Physik-News vom 30.11.2020
Was lässt die Oberfläche des Mars-Monds Phobos verwittern? Ergebnisse der TU Wien liefern wichtige Erkenntnisse, bald soll eine Weltraummission Gesteinsproben nehmen.
Wetter in unserem Sinn gibt es im Weltraum natürlich keines – trotzdem kann Gestein auch im Vakuum des Alls „verwittern“, wenn es andauernd von energiereichen Teilchen bombardiert wird, die etwa von der Sonne ausgesendet werden. In einer ganz speziellen Situation befindet sich der Marsmond Phobos: Er ist dem Mars so nahe, dass dort nicht nur der Sonnenwind, sondern auch das Bombardement durch Partikel vom Mars eine entscheidende Rolle spielt. Ein Forschungsteam der TU Wien konnte das nun in Laborexperimenten nachmessen. Schon in wenigen Jahren soll eine japanische Weltraummission auf Phobos Gesteinsproben nehmen und zur Erde zurückbringen.
Publikation:
P. S. Szabo, et al.
Experimental Insights into Space Weathering of Phobos: Laboratory Investigation of Sputtering by Atomic and Molecular Planetary Ions
Journal of Geophysical Research: Planets
DOI: 10.1029/2020JE006583
Milliarden Jahre Teilchenbeschuss
„Es gibt unterschiedliche Theorien, wie der Mars-Mond Phobos entstanden sein könnte“, sagt Paul Szabo, der in der Forschungsgruppe von Prof. Friedrich Aumayr am Institut für Angewandte Physik der TU Wien an seiner Dissertation arbeitet. „Es ist denkbar, dass Phobos ursprünglich ein Asteroid war, der dann vom Mars eingefangen wurde, er könnte aber auch bei einer Kollision eines größeren Himmelskörpers mit dem Mars entstanden sein.“
Wenn man solche Himmelskörper untersucht, muss man immer berücksichtigen, dass sich ihre Oberflächen im Lauf von Milliarden Jahren durch kosmischen Teilchenbeschuss völlig verändert haben. Das Gestein auf der Erde bleibt davon unberührt, weil unsere Atmosphäre die Teilchen abschirmt. Doch die Geologie atmosphäreloser Himmelskörper wie etwa unserem Mond oder Phobos kann man nur dann verstehen, wenn es gelingt, die „Weltraum-Verwitterung“ richtig einzuschätzen.
Daher wurden an der TU Wien aufwändige Experimente durchgeführt: „Wir haben Gesteinsmaterial verwendet, wie es auch auf Phobos vorkommt und es in Vakuumkammern mit unterschiedlichen geladenen Teilchen beschossen“, erklärt Paul Szabo. „Mit einer extrem präzisen Waage kann man messen, wie viel Material dabei abgetragen wird, und welche Teilchen sich wie stark auf das Gestein auswirken.“
Dabei muss man die besonderen Eigenschaften des Mondes Phobos berücksichtigen: Sein Abstand zur Marsoberfläche beträgt weniger als 6000 km – das sind nicht einmal zwei Prozent des Abstands zwischen unserem Mond und der Erde. Genau wie unser Mond befindet er sich in einer gebundenen Rotation um seinen Planeten: Er wendet dem Mars immer dieselbe Seite zu.
„Aufgrund des extrem kleinen Abstands zwischen Mars und Phobos spielen auf der Phobos-Oberfläche nicht nur Partikel eine Rolle, die von der Sonne ausgesandt werden, sondern auch Partikel vom Mars“, sagt Paul Szabo. Die Marsatmosphäre besteht hauptsächlich aus Kohlendioxid. Aber in den äußeren Regionen der Atmosphäre finden sich auch größere Mengen an Sauerstoff. Wenn Teilchen des Sonnenwinds dort mit großer Wucht eindringen, können dabei Sauerstoff-Ionen entstehen, die dann mit hoher Geschwindigkeit auf Phobos treffen und dort das Gestein verändern.
Daten für Weltraummission 2024
„Wir konnten mit unseren Messmethoden die Erosion viel genauer abschätzen als das bisher möglich war“, sagt Friedrich Aumayr. „Unsere Ergebnisse zeigen, dass man den Effekt der Sauerstoff-Ionen aus der Mars-Atmosphäre keinesfalls vernachlässigen darf. Wichtig ist auch, zwischen den beiden Seiten von Phobos zu unterscheiden: Während auf der Mars-abgewandten Seite der Sonnenwind dominiert, überwiegt auf der anderen Seite, wenn die Sonne vom Mars abgeschirmt wird, das Bombardement von der Mars-Atmosphäre.“
Diese Überlegungen könnten bald auch bei der Auswertung echter Phobos-Proben eine wichtige Rolle spielen: Bereits 2024 soll im Rahmen der japanischen Weltraummission MMX (Martian Moon eXploration) ein Raumfahrzeug Phobos erreichen und Gesteinsproben zur Erde zurückbringen.
Diese Newsmeldung wurde mit Material der Technischen Universität Wien via Informationsdienst Wissenschaft erstellt.