Neue Lösung für eines der großen Probleme der Fusionsforschung

Physik-News vom 11.10.2022


Aktuelle Experimente und Simulationen zeigen, wie sich zerstörerische Plasma-Instabilitäten in Fusionsreaktoren wie ITER vermeiden lassen.

Plasma-Instabilitäten vom Typ-I ELM können die Wände von Fusionsanlagen zum Schmelzen bringen. Ein Team um Forschende des Max-Planck-Instituts für Plasmaphysik (IPP) und der Technischen Universität Wien fand einen Weg, sie in den Griff zu bekommen – und veröffentlichte die Arbeit im renommierten Fachjournal „Physical Review Letters“.


Künstlerische Darstellung: Der Plasmastrom muß von einem Kontakt mit der Reaktorwand abgehalten werden.

Publikation:


G. F. Harrer, et al.
A quasi-continuous exhaust scenario for a fusion reactor: the renaissance of small edge localized modes
Physical Review Letters

DOI: 10.1103/PhysRevLett.129.165001



Kernfusionskraftwerke könnten unsere Energieprobleme eines Tages nachhaltig lösen. Deshalb wird weltweit an dieser Methode der Energiegewinnung geforscht, die Prozesse auf der Sonne nachahmt. Damit das Prinzip auch auf der Erde funktioniert, müssen Plasmen in Reaktoren auf mindestens 100 Millionen Grad Celsius erhitzt werden. Magnetfelder schließen das Plasma ein, sodass die Wand des Reaktors nicht schmilzt. Das funktioniert nur, weil die äußersten Zentimeter im magnetisch geformten Plasmarand extrem gut isolieren. In diesem Bereich kommt es aber immer wieder zu sogenannten Plasma-Instabilitäten. Dabei werden kurzzeitig energiereiche Teilchen an die Reaktorwand geschossen, die dadurch beschädigt werden kann.

v.l.n.r: Georg Harrer (TU Wien), Lidija Radovanovic (TU Wien), Elisabeth Wolfrum (IPP Garching), Friedrich Aumayr (TU Wien) mit einem 3D-gedruckten 1:100 Modell des ITER.

Nun konnten Forschende vom Max-Planck-Institut für Plasmaphysik (IPP) in Garching und von der TU Wien zeigen: Es gibt einen Betriebsmodus für Fusionsreaktoren, der dieses Problem vermeidet. Statt großer, potenziell zerstörerischer Instabilitäten, so genannte Edge Localised Modes (ELM) vom Typ I, nimmt man ganz bewusst viele kleine Instabilitäten in Kauf, die für den Reaktor kein Problem darstellen. „Unsere Arbeiten stellen einen Durchbruch im Verständnis des Auftretens und der Verhinderung von großen Typ-I ELMs dar“, sagt Elisabeth Wolfrum, Forschungsgruppenleiterin am IPP in Garching und Professorin an der TU Wien. „Die von uns vorgeschlagene Betriebsart ist wohl das vielversprechendste Szenario für Plasmen in künftigen Fusionskraftwerken.“ Die Ergebnisse wurden im renommierten Fachjournal „Physical Review Letters“ als Editors‘ Suggestion publiziert.


Blick ins Innere des Plasmagefäßes der Fusionsanlage ASDEX Upgrade.

Die Renaissance einer verworfenen Betriebsart

In einem torusförmigen Tokamak-Fusionsreaktor bewegen sich die ultraheißen Plasmateilchen mit hoher Geschwindigkeit. Mächtige Magnetspulen sorgen dafür, dass die Teilchen eingesperrt bleiben anstatt mit zerstörerischer Wucht auf die Wand des Reaktors zu treffen. „Perfekt von der Reaktorwand isolieren möchte man das Plasma aber auch nicht, schließlich muss neuer Brennstoff zugeführt und das bei der Fusion entstandene Helium abtransportiert werden“, erklärt Friedrich Aumayr, Professor für Ionen- & Plasmaphysik am Institut für Angewandte Physik der TU Wien.

Die Details der Dynamik im Inneren des Reaktors sind kompliziert: Die Bewegung der Teilchen hängt von Plasmadichte, Temperatur und Magnetfeld ab. Je nachdem, wie man diese Parameter wählt, sind unterschiedliche Betriebsarten möglich. Eine jahrelange Zusammenarbeit des IPP und der TU Wien mündete nun in einen Betriebsmodus, der die besonders zerstörerischen Plasmainstabilitäten vom Typ-I ELM verhindern kann.

Schon vor einigen Jahren zeigten die Experimente ein Rezept gegen die gefürchteten Typ-I ELMs: Das Plasma wird durch die Magnetspulen leicht verformt, sodass sein Plasmaquerschnitt nicht mehr elliptisch ist, sondern einem abgerundeten Dreieck ähnelt. Gleichzeitig erhöht man speziell am Rand die Dichte des Plasmas. „Zunächst dachte man aber, das sei ein Szenario, das nur in den momentan laufenden kleineren Maschinen wie ASDEX Upgrade am IPP in Garching auftritt und für einen Reaktor irrelevant ist“, erklärt Lidija Radovanovic, die derzeit an der TU Wien an ihrer Dissertation zu diesem Thema arbeitet. „Mit neuen Experimenten und Simulationen konnten wir aber nun zeigen: Die Betriebsart kann auch in für Reaktoren vorgesehenen Parameterbereichen die gefährlichen Instabilitäten verhindern.“

Wie ein Topf mit Deckel

Durch die dreieckige Form des Plasmas und das gezielte Einblasen zusätzlicher Teilchen am Rand treten viele kleine Instabilitäten auf – und zwar mehrere tausend Mal pro Sekunde. „Diese kleinen Teilchen-Bursts treffen die Wand des Reaktors schneller, als die sich aufheizen und wieder abkühlen kann“, erklärt Georg Harrer, Erstautor der Publikation, der zur weiteren Untersuchung des neuen Betriebsmodus einen zweijährigen EUROfusion Researcher Grant von der EU erhalten hat. „Daher spielen diese einzelnen Instabilitäten für die Reaktorwand keine große Rolle.“ Wie das Team durch detaillierte Simulationsrechnungen zeigen konnte, verhindern diese Mini-Instabilitäten aber die großen Instabilitäten, die sonst Schaden anrichten würden.
„Es ist ein bisschen wie bei einem Kochtopf mit Deckel, in dem das Wasser zu kochen beginnt“, erklärt Georg Harrer. „Wenn sich immer wieder Druck aufbaut, den Deckel hebt und der Dampf entweicht, dann wird der Deckel heftig klappern. Wenn man hingegen den Deckel leicht schräg stellt, dann kann kontinuierlich Dampf entkommen, aber der Deckel bleibt stabil und klappert nicht.“

Diese Fusionsreaktor-Betriebsart lässt sich in unterschiedlichen Reaktoren realisieren – nicht nur am ASDEX-Upgrade-Reaktor am IPP in Garching, sondern auch am derzeit in Bau befindlichen ITER in Frankreich oder auch in künftigen Fusionskraftanlagen wie DEMO.



Die News der letzten 14 Tage 8 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.

28.10.2019
Elektrodynamik | Plasmaphysik

Ein übersehenes Puzzleteil des Sonnendynamos: Forscherteam weist besondere Form magnetischer Instabilität nach
Im rotierenden Plasma der Sonne wirkt ein bis dato unbeachteter Mechanismus: eine magnetische Instabilität, von der Wissenschaftler zuvor dachten, dass sie unter diesen Bedingungen physikalisch unmöglich wäre.
26.11.2018
Plasmaphysik | Teilchenphysik

Erfolgreiche zweite Experimentrunde mit Wendelstein 7-X
Die von Juli bis November an der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald gelaufenen Experimente brachten höhere Werte für die Dichte und den Energieinhalt des Plasmas sowie lange Entladungsdauern bis zu 100 Sekunden – Rekordergebnisse für Anlagen vom Typ Stellarator.
15.03.2021
Plasmaphysik

Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
18.09.2018
Plasmaphysik | Quantenoptik

Extrem klein und schnell: Laser zündet heißes Plasma
Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab.
04.07.2018
Plasmaphysik | Teilchenphysik

IPP-Teststand ELISE erreicht erstes ITER-Ziel
Neutralteilchenheizung für ITER / Strahl schneller Wasserstoff-Teilchen für die Plasmaheizung.
17.04.2018
Festkörperphysik | Plasmaphysik | Teilchenphysik

Gammastrahlungsblitze aus Plasmafäden
Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen.
28.02.2019
Plasmaphysik

Interview mit Dr. E. Stenson über die sensiblen Antiteilchen der Elektronen: Positronen in der Falle
Erstmals ist es Wissenschaftlern der Technischen Universität München (TUM) und des Max-Planck-Instituts für Plasmaphysik (IPP) gelungen, verlustfrei Positronen in einen Magnetfeldkäfig zu bringen.
18.12.2019
Thermodynamik | Plasmaphysik

Den Grundlagen der Thermodynamik auf der Spur
Kieler Physiker können in Komplexen Plasmen erstmals die kaum messbare Größe Entropie bestimmen.
05.06.2019
Plasmaphysik | Quantenoptik

So heiß wie im Inneren der Sonne
Physiker der Friedrich-Schiller-Universität Jena erstellen erstmals Plasma mithilfe von Nanoröhrchen und langwelligem, kurzgepulsten Laser.
02.07.2020
Kernphysik | Plasmaphysik

Sanfter Wandkontakt – das passende Szenario für ein Fusionskraftwerk
Eine aussichtsreiche Betriebsweise für das Plasma eines späteren Kraftwerks wurde jetzt an der Fusionsanlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching entwickelt.
01.02.2022
Plasmaphysik | Quantenoptik | Teilchenphysik

Viel hilft nicht automatisch viel
Um Tumore in sensiblen Körperregionen zu behandeln, etwa dem Gehirn oder den Augen, kommt die Protonentherapie zum Einsatz.
11.07.2019
Teilchenphysik | Plasmaphysik

Experimenteller Mini-Beschleuniger erreicht Rekordenergie
Ein DESY-Forschungsteam hat einen neuen Rekord für einen Miniatur-Teilchenbeschleuniger erzielt: Erstmals hat ein mit Terahertz-Strahlung betriebener Beschleuniger die Energie der injizierten Elektronen mehr als verdoppelt.
02.02.2021
Plasmaphysik | Relativitätstheorie

Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
28.01.2021
Festkörperphysik | Plasmaphysik

Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
29.01.2020
Kernphysik | Plasmaphysik | Quantenphysik

Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen
Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt.
18.08.2021
Plasmaphysik

Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
15.01.2019
Festkörperphysik | Plasmaphysik

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern
Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt.
08.09.2022
Galaxien | Physikdidaktik | Plasmaphysik

Ein Knick im Plasmastrom
Eine internationale Kollaboration konnte einen bisher einmaligen Blick auf die Vorgänge in einem aktiven Galaxienkern gewinnen.
19.12.2019
Plasmaphysik | Quantenoptik

Laser-Plasmabeschleuniger ohne Limits
HZDR-Physiker stellen Konzept für laserbasierte Elektronenbeschleuniger vor.
12.08.2021
Plasmaphysik | Teilchenphysik

Das Konzept von Wendelstein 7-X bewährt sich
Eines der wichtigsten Optimierungsziele, die der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald zugrunde liegen, wurde jetzt bestätigt.
26.10.2022
Atomphysik | Plasmaphysik | Geschichte der Physik

Vor 40 Jahren: Diese Entdeckung hat ITER erst möglich gemacht
Vor 40 Jahren fanden Physiker am Max-Planck-Institut für Plasmaphysik einen neuen Plasmazustand, der sich besonders gut für die Energiegewinnung eignen könnte: die H-Mode.
19.11.2020
Plasmaphysik | Quantenoptik

Was Sterne zum Leuchten bringt
Internationales Forschungsteam der Universitäten in Berkeley, Madrid und Jena sowie des Institut Polytechnique de Paris beobachtet in Laborversuchen nichtlineare Ionisationsvorgänge in heißen dichten Plasmen.
09.02.2022
Plasmaphysik

Fusionsanlage JET stellt neuen Energie-Weltrekord auf
Auf dem Weg zur Energieerzeugung durch Fusionsplasmen haben europäische Wissenschaftler und Wissenschaftlerinnen einen wichtigen Erfolg erzielt.
02.06.2020
Plasmaphysik

Neue Messung verschärft altes Problem
Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik

Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
26.06.2019
Elektrodynamik | Plasmaphysik | Festkörperphysik

Ein Blitz unter Wasser
Elektrochemische Zellen helfen unter anderem dabei, CO2 zu recyceln.
29.08.2018
Plasmaphysik | Teilchenphysik

Erfolg für Teilchenbeschleuniger der Zukunft: Elektronen reiten Plasmawelle
Physikern könnte sich bald eine neue Tür zu den Geheimnissen des Universums öffnen.
25.06.2018
Plasmaphysik | Teilchenphysik

Fusionsanlage Wendelstein 7-X erreicht Weltrekord
Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung der Optimierung Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der zurückliegenden Experimentierrunde erreicht.
11.10.2022
Elektrodynamik | Plasmaphysik

Neue Lösung für eines der großen Probleme der Fusionsforschung
Aktuelle Experimente und Simulationen zeigen, wie sich zerstörerische Plasma-Instabilitäten in Fusionsreaktoren wie ITER vermeiden lassen.
30.09.2021
Plasmaphysik | Teilchenphysik

Strahldiagnostik für zukünftige Beschleuniger im Tischformat
Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer - Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren.